Quantum and classical magnetic Bloch points

被引:0
|
作者
Kuchkin, Vladyslav M. [1 ]
Haller, Andreas [1 ]
Adams, Michael P. [1 ]
Rai, Venus [1 ]
Sinaga, Evelyn P. [1 ]
Michels, Andreas [1 ]
Schmidt, Thomas L. [1 ]
机构
[1] Univ Luxembourg, Dept Phys & Mat Sci, L-1511 Luxembourg, Luxembourg
来源
PHYSICAL REVIEW RESEARCH | 2025年 / 7卷 / 01期
关键词
D O I
10.1103/PhysRevResearch.7.013195
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A Bloch point represents a three-dimensional hedgehog singularity of a magnetic vector field in which the magnetization vanishes. However, standard micromagnetic theory, developed for magnetic moments of fixed lengths, lacks full applicability in studying such singularities. To address this gap, we study a Bloch point in a quantum Heisenberg model for the case of spin-1/2 particles. Performing an exact diagonalization of the Hamiltonian as well as using density matrix renormalization group techniques, we obtain the ground state, which can be used to recover the corresponding magnetization profile. Our findings demonstrate a variation of the spin length in the quantum model, leading smoothly to zero magnetization at the Bloch point. Our results indicate the necessity of generalizing the classical micromagnetic model by adding the third degree of freedom of the spins: the ability to change their length. To this end, we introduce a phenomenological micromagnetic S3-model, which enables the description of magnets with and without Bloch point singularities.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Quantum Landau-Lifshitz-Bloch equation and its comparison with the classical case
    Nieves, P.
    Serantes, D.
    Atxitia, U.
    Chubykalo-Fesenko, O.
    PHYSICAL REVIEW B, 2014, 90 (10)
  • [22] Quantum tunneling of the Bloch point in a magnetic film with strong uniaxial magnetic anisotropy
    Shevchenko, A. B.
    Barabash, M. Yu
    LOW TEMPERATURE PHYSICS, 2011, 37 (08) : 690 - 692
  • [23] From classical to quantum dynamics at Rokhsar-Kivelson points
    Henley, CL
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2004, 16 (11) : S891 - S898
  • [24] Electron self-trapping at quantum and classical critical points
    Auslender, M. I.
    Katsnelson, M. I.
    ANNALS OF PHYSICS, 2006, 321 (08) : 1762 - 1789
  • [25] Itinerant density wave instabilities at classical and quantum critical points
    Yejun Feng
    Jasper van Wezel
    Jiyang Wang
    Felix Flicker
    D. M. Silevitch
    P. B. Littlewood
    T. F. Rosenbaum
    Nature Physics, 2015, 11 : 865 - 871
  • [26] Itinerant density wave instabilities at classical and quantum critical points
    Feng, Yejun
    van Wezel, Jasper
    Wang, Jiyang
    Flicker, Felix
    Silevitch, D. M.
    Littlewood, P. B.
    Rosenbaum, T. F.
    NATURE PHYSICS, 2015, 11 (10) : 865 - 871
  • [27] Quantum oscillations of the Bloch point in domain walls of magnetic bubbles
    Shevchenko, A. B.
    Barabash, M. Yu.
    LOW TEMPERATURE PHYSICS, 2016, 42 (01) : 42 - 44
  • [28] Bloch electrons in a magnetic field: Topology of quantum states and transport
    V. Ya. Demikhovskii
    Journal of Experimental and Theoretical Physics Letters, 2003, 78 : 680 - 690
  • [29] Bloch electrons in a magnetic field: Topology of quantum states and transport
    Demikhovskii, VY
    JETP LETTERS, 2003, 78 (10) : 680 - 690
  • [30] Classical and quantum mechanical motion in magnetic fields
    Franklin, J.
    Newton, K. Cole
    AMERICAN JOURNAL OF PHYSICS, 2016, 84 (04) : 263 - 269