K-theoretic Gromov-Witten invariants of line degrees on flag varieties

被引:0
|
作者
Buch, Anders S. [1 ]
Chen, Linda [2 ]
Xu, Weihong [3 ]
机构
[1] Rutgers State Univ, Dept Math, 110 Frelinghuysen Rd, Piscataway, NJ 08854 USA
[2] Swarthmore Coll, Dept Math & Stat, 500 Coll Ave, Swarthmore, PA 19081 USA
[3] CALTECH, Div Phys Math & Astron, 1200 E Calif Blvd, Pasadena, CA 91125 USA
来源
关键词
Gromov-Witten invariants; flag varieties; big quantum K-theory; QUANTUM COHOMOLOGY;
D O I
10.1142/S0217751X24460138
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
A homology class d is an element of H-2(X, Z) of a complex flag variety X = G/P is called a line degree if the moduli space M-0,M-0(X, d) of 0-pointed stable maps to X of degree d is also a flag variety G/P '. We prove a quantum equals classical formula stating that any n-pointed (equivariant, K-theoretic, genus zero) Gromov-Witten invariant of line degree on X is equal to a classical intersection number computed on the flag variety G/P '. We also prove an n-pointed analogue of the Peterson comparison formula stating that these invariants coincide with Gromov-Witten invariants of the variety of complete flags G/B. Our formulas make it straightforward to compute the big quantum K-theory ring QK(big)(X) modulo the ideal < Q(d)> generated by degrees d larger than line degrees.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Maximal subbundles and Gromov-Witten invariants
    Lange, H
    Newstead, PE
    TRIBUTE TO C.S. SESHADRI: A COLLECTION OF ARTICLES ON GEOMETRY AND REPRESENTATION THEORY, 2003, : 310 - 322
  • [42] Gromov-Witten invariants of symplectic sums
    Ionel, EN
    Parker, TH
    MATHEMATICAL RESEARCH LETTERS, 1998, 5 (05) : 563 - 576
  • [43] Gromov-Witten Invariants of Toric Fibrations
    Brown, Jeff
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2014, 2014 (19) : 5437 - 5482
  • [44] The product formula for Gromov-Witten invariants
    Behrend, K
    JOURNAL OF ALGEBRAIC GEOMETRY, 1999, 8 (03) : 529 - 541
  • [45] Gromov-Witten invariants and quantum cohomology
    Amiya Mukherjee
    Proceedings of the Indian Academy of Sciences - Mathematical Sciences, 2006, 116 : 459 - 475
  • [46] Gromov-Witten invariants of bielliptic surfaces
    Blomme, Thomas
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2025, 111 (02):
  • [47] Gromov-Witten invariants in algebraic geometry
    K. Behrend
    Inventiones mathematicae, 1997, 127 : 601 - 617
  • [48] Gromov-Witten theory and invariants of matroids
    Ranganathan, Dhruv
    Usatine, Jeremy
    SELECTA MATHEMATICA-NEW SERIES, 2022, 28 (04):
  • [49] Reconstruction theorems for Gromov-Witten invariants
    Ciolli, Gianni
    BULLETIN DES SCIENCES MATHEMATIQUES, 2010, 134 (01): : 116 - 125
  • [50] GROMOV-WITTEN INVARIANTS FOR G/B AND PONTRYAGIN PRODUCT FOR ΩK
    Leung, Naichung Conan
    Li, Changzheng
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 364 (05) : 2567 - 2599