K-theoretic Gromov-Witten invariants of line degrees on flag varieties

被引:0
|
作者
Buch, Anders S. [1 ]
Chen, Linda [2 ]
Xu, Weihong [3 ]
机构
[1] Rutgers State Univ, Dept Math, 110 Frelinghuysen Rd, Piscataway, NJ 08854 USA
[2] Swarthmore Coll, Dept Math & Stat, 500 Coll Ave, Swarthmore, PA 19081 USA
[3] CALTECH, Div Phys Math & Astron, 1200 E Calif Blvd, Pasadena, CA 91125 USA
来源
关键词
Gromov-Witten invariants; flag varieties; big quantum K-theory; QUANTUM COHOMOLOGY;
D O I
10.1142/S0217751X24460138
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
A homology class d is an element of H-2(X, Z) of a complex flag variety X = G/P is called a line degree if the moduli space M-0,M-0(X, d) of 0-pointed stable maps to X of degree d is also a flag variety G/P '. We prove a quantum equals classical formula stating that any n-pointed (equivariant, K-theoretic, genus zero) Gromov-Witten invariant of line degree on X is equal to a classical intersection number computed on the flag variety G/P '. We also prove an n-pointed analogue of the Peterson comparison formula stating that these invariants coincide with Gromov-Witten invariants of the variety of complete flags G/B. Our formulas make it straightforward to compute the big quantum K-theory ring QK(big)(X) modulo the ideal < Q(d)> generated by degrees d larger than line degrees.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Computing genus zero Gromov-Witten invariants of Fano varieties
    Maszczyk, Tomasz
    JOURNAL OF GEOMETRY AND PHYSICS, 2011, 61 (06) : 1079 - 1092
  • [22] Hamiltonian / Gauge theoretical Gromov-Witten invariants of toric varieties
    Mihai Halic
    Mathematische Zeitschrift, 2006, 252 : 157 - 208
  • [23] Gromov-Witten invariants of flag manifolds, via D-modules
    Amarzaya, A
    Guest, MA
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2005, 72 : 121 - 136
  • [24] THETA BASES AND LOG GROMOV-WITTEN INVARIANTS OF CLUSTER VARIETIES
    Mandel, Travis
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 374 (08) : 5433 - 5471
  • [25] Local Gromov-Witten invariants are log invariants
    van Garrel, Michel
    Graber, Tom
    Ruddat, Helge
    ADVANCES IN MATHEMATICS, 2019, 350 : 860 - 876
  • [26] A PRODUCT FORMULA FOR GROMOV-WITTEN INVARIANTS
    Hyvrier, Clement
    JOURNAL OF SYMPLECTIC GEOMETRY, 2012, 10 (02) : 247 - 324
  • [27] Positivity of equivariant Gromov-Witten invariants
    Anderson, Dave
    Chen, Linda
    MATHEMATICAL RESEARCH LETTERS, 2015, 22 (01) : 1 - 9
  • [28] Gromov-Witten invariants of the Riemann sphere
    Dubrovin, Boris
    Yang, Di
    Zagier, Don
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2020, 16 (01) : 153 - 190
  • [29] Tropical descendant Gromov-Witten invariants
    Markwig, Hannah
    Rau, Johannes
    MANUSCRIPTA MATHEMATICA, 2009, 129 (03) : 293 - 335
  • [30] Gromov-Witten invariants and quantum cohomology
    Mukherjee, Amiya
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2006, 116 (04): : 459 - 475