K-theoretic Gromov-Witten invariants of line degrees on flag varieties

被引:0
|
作者
Buch, Anders S. [1 ]
Chen, Linda [2 ]
Xu, Weihong [3 ]
机构
[1] Rutgers State Univ, Dept Math, 110 Frelinghuysen Rd, Piscataway, NJ 08854 USA
[2] Swarthmore Coll, Dept Math & Stat, 500 Coll Ave, Swarthmore, PA 19081 USA
[3] CALTECH, Div Phys Math & Astron, 1200 E Calif Blvd, Pasadena, CA 91125 USA
来源
关键词
Gromov-Witten invariants; flag varieties; big quantum K-theory; QUANTUM COHOMOLOGY;
D O I
10.1142/S0217751X24460138
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
A homology class d is an element of H-2(X, Z) of a complex flag variety X = G/P is called a line degree if the moduli space M-0,M-0(X, d) of 0-pointed stable maps to X of degree d is also a flag variety G/P '. We prove a quantum equals classical formula stating that any n-pointed (equivariant, K-theoretic, genus zero) Gromov-Witten invariant of line degree on X is equal to a classical intersection number computed on the flag variety G/P '. We also prove an n-pointed analogue of the Peterson comparison formula stating that these invariants coincide with Gromov-Witten invariants of the variety of complete flags G/B. Our formulas make it straightforward to compute the big quantum K-theory ring QK(big)(X) modulo the ideal < Q(d)> generated by degrees d larger than line degrees.
引用
收藏
页数:11
相关论文
共 50 条