Automatic Text Classification With Large Language Models: A Review of <monospace>openai</monospace> for Zero- and Few-Shot Classification

被引:0
|
作者
Anglin, Kylie L. [1 ]
Ventura, Claudia [1 ]
机构
[1] Univ Connecticut, Storrs, CT 06269 USA
关键词
large language models; LLMs; artificial intelligence; <monospace>openai</monospace>; educational measurement;
D O I
10.3102/10769986241279927
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
While natural language documents, such as intervention transcripts and participant writing samples, can provide highly nuanced insights into educational and psychological constructs, researchers often find these materials difficult and expensive to analyze. Recent developments in machine learning, however, have allowed social scientists to harness the power of artificial intelligence for complex data categorization tasks. One approach, supervised learning, supports high-performance categorization yet still requires a large, hand-labeled training corpus, which can be costly. An alternative approach-zero- and few-shot classification with pretrained large language models-offers a cheaper, compelling alternative. This article considers the application of zero-shot and few-shot classification in educational research. We provide an overview of large language models, a step-by-step tutorial on using the Python openai package for zero-shot and few-shot classification, and a discussion of relevant research considerations for social scientists.<br />
引用
收藏
页数:23
相关论文
共 50 条
  • [41] Hierarchical Attention Prototypical Networks for Few-Shot Text Classification
    Sun, Shengli
    Sun, Qingfeng
    Zhou, Kevin
    Lv, Tengchao
    2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019): PROCEEDINGS OF THE CONFERENCE, 2019, : 476 - 485
  • [42] Few-shot Text Classification Method Based on Feature Optimization
    Peng, Jing
    Huo, Shuquan
    JOURNAL OF WEB ENGINEERING, 2023, 22 (03): : 497 - 514
  • [43] Dynamic Memory Induction Networks for Few-Shot Text Classification
    Geng, Ruiying
    Li, Binhua
    Li, Yongbin
    Sun, Jian
    Zhu, Xiaodan
    58TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2020), 2020, : 1087 - 1094
  • [44] Few-Shot Transfer Learning for Text Classification With Lightweight Word Embedding Based Models
    Pan, Chongyu
    Huang, Jian
    Gong, Jianxing
    Yuan, Xingsheng
    IEEE ACCESS, 2019, 7 : 53296 - 53304
  • [45] Large Language Models Enable Few-Shot Clustering
    Viswanathan, Vijay
    Gashteovski, Kiril
    Lawrence, Carolin
    Wu, Tongshuang
    Neubig, Graham
    TRANSACTIONS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, 2024, 12 : 321 - 333
  • [46] Harnessing large language models' zero-shot and few-shot learning capabilities for regulatory research
    Meshkin, Hamed
    Zirkle, Joel
    Arabidarrehdor, Ghazal
    Chaturbedi, Anik
    Chakravartula, Shilpa
    Mann, John
    Thrasher, Bradlee
    Li, Zhihua
    BRIEFINGS IN BIOINFORMATICS, 2024, 25 (05)
  • [48] Few-Shot Image Classification of Crop Diseases Based on Vision-Language Models
    Zhou, Yueyue
    Yan, Hongping
    Ding, Kun
    Cai, Tingting
    Zhang, Yan
    SENSORS, 2024, 24 (18)
  • [49] MetricPrompt: Prompting Model as a Relevance Metric for Few-shot Text Classification
    Dong, Hongyuan
    Zhang, Weinan
    Che, Wanxiang
    PROCEEDINGS OF THE 29TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2023, 2023, : 426 - 436
  • [50] Enhance Prototypical Network with Text Descriptions for Few-shot Relation Classification
    Yang, Kaijia
    Zheng, Nantao
    Dai, Xinyu
    He, Liang
    Huang, Shujian
    Chen, Jiajun
    CIKM '20: PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, 2020, : 2273 - 2276