Dynamic Memory Induction Networks for Few-Shot Text Classification

被引:0
|
作者
Geng, Ruiying [1 ]
Li, Binhua [1 ]
Li, Yongbin [1 ]
Sun, Jian [1 ]
Zhu, Xiaodan [2 ,3 ]
机构
[1] Alibaba Grp, Beijing, Peoples R China
[2] Queens Univ, Ingenu Labs, Res Inst, Kingston, ON, Canada
[3] Queens Univ, ECE, Kingston, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes Dynamic Memory Induction Networks (DMIN) for few-shot text classification. The model utilizes dynamic routing to provide more flexibility to memory-based few-shot learning in order to better adapt the support sets, which is a critical capacity of few-shot classification models. Based on that, we further develop induction models with query information, aiming to enhance the generalization ability of meta-learning. The proposed model achieves new state-of-the-art results on the miniRCV1 and ODIC dataset, improving the best performance (accuracy) by 2 similar to 4%. Detailed analysis is further performed to show the effectiveness of each component.
引用
收藏
页码:1087 / 1094
页数:8
相关论文
共 50 条
  • [1] Induction Networks for Few-Shot Text Classification
    Geng, Ruiying
    Li, Binhua
    Li, Yongbin
    Zhu, Xiaodan
    Jian, Ping
    Sun, Jian
    2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019): PROCEEDINGS OF THE CONFERENCE, 2019, : 3904 - 3913
  • [2] Compound Memory Networks for Few-Shot Video Classification
    Zhu, Linchao
    Yang, Yi
    COMPUTER VISION - ECCV 2018, PT VII, 2018, 11211 : 782 - 797
  • [3] Hierarchical Attention Prototypical Networks for Few-Shot Text Classification
    Sun, Shengli
    Sun, Qingfeng
    Zhou, Kevin
    Lv, Tengchao
    2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019): PROCEEDINGS OF THE CONFERENCE, 2019, : 476 - 485
  • [4] Causal representation for few-shot text classification
    Yang, Maoqin
    Zhang, Xuejie
    Wang, Jin
    Zhou, Xiaobing
    APPLIED INTELLIGENCE, 2023, 53 (18) : 21422 - 21432
  • [5] Few-shot learning for short text classification
    Yan, Leiming
    Zheng, Yuhui
    Cao, Jie
    MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (22) : 29799 - 29810
  • [6] Adversarial training for few-shot text classification
    Croce, Danilo
    Castellucci, Giuseppe
    Basili, Roberto
    INTELLIGENZA ARTIFICIALE, 2020, 14 (02) : 201 - 214
  • [7] Few-shot learning for short text classification
    Leiming Yan
    Yuhui Zheng
    Jie Cao
    Multimedia Tools and Applications, 2018, 77 : 29799 - 29810
  • [8] Causal representation for few-shot text classification
    Maoqin Yang
    Xuejie Zhang
    Jin Wang
    Xiaobing Zhou
    Applied Intelligence, 2023, 53 : 21422 - 21432
  • [9] Continual Few-Shot Learning for Text Classification
    Pasunuru, Ramakanth
    Stoyanov, Veselin
    Bansal, Mohit
    2021 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2021), 2021, : 5688 - 5702
  • [10] Few-Shot Ensemble Learning for Video Classification with SlowFast Memory Networks
    Qi, Mengshi
    Qin, Jie
    Zhen, Xiantong
    Huang, Di
    Yang, Yi
    Luo, Jiebo
    MM '20: PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, 2020, : 3007 - 3015