Generative Zero-Shot Prompt Learning for Cross-Domain Slot Filling with Inverse Prompting

被引:0
|
作者
Li, Xuefeng [1 ]
Wang, Liwen [1 ]
Dong, Guanting [1 ]
He, Keqing [2 ]
Zhao, Jinzheng [3 ]
Lei, Hao [1 ]
Liu, Jiachi [1 ]
Xu, Weiran [1 ]
机构
[1] Beijing Univ Posts & Telecommun, Beijing, Peoples R China
[2] Meituan Grp, Beijing, Peoples R China
[3] Univ Surrey, Sch Comp Sci & Elect Engn, Guildford, England
基金
国家重点研发计划;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Zero-shot cross-domain slot filling aims to transfer knowledge from the labeled source domain to the unlabeled target domain. Existing models either encode slot descriptions and examples or design handcrafted question templates using heuristic rules, suffering from poor generalization capability or robustness. In this paper, we propose a generative zero-shot prompt learning framework for cross-domain slot filling, both improving generalization and robustness than previous work. Besides, we introduce a novel inverse prompting strategy to distinguish different slot types to avoid the multiple prediction problem, and an efficient prompt tuning strategy to boost higher performance by only training fewer prompt parameters. Experiments and analysis demonstrate the effectiveness of our proposed framework, especially huge improvements (+13.44% F1) on the unseen slots.(1)
引用
收藏
页码:825 / 834
页数:10
相关论文
共 50 条
  • [1] Robust Zero-Shot Cross-Domain Slot Filling with Example Values
    Shah, Darsh J.
    Gupta, Raghav
    Fayazi, Amir A.
    Hakkani-Tur, Dilek
    57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019), 2019, : 5484 - 5490
  • [2] Adaptive End-to-End Metric Learning for Zero-Shot Cross-Domain Slot Filling
    Shi, Yuanjun
    Wu, Linzhi
    Shao, Minglai
    2023 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING, EMNLP 2023, 2023, : 6291 - 6301
  • [3] HierarchicalContrast: A Coarse-to-Fine Contrastive Learning Framework for Cross-Domain Zero-Shot Slot Filling
    Zhang, Junwen
    Zhang, Yin
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (EMNLP 2023), 2023, : 14483 - 14503
  • [4] Robust Multi-Prototypes Aware Integration for Zero-Shot Cross-Domain Slot Filling
    Chen, Shaoshen
    Huang, Peijie
    Zhu, Zhanbiao
    Zhang, Yexing
    Xu, Yuhong
    IEEE SIGNAL PROCESSING LETTERS, 2024, 31 : 3169 - 3173
  • [5] Improving Zero-shot Cross-domain Slot Filling via Transformer-based Slot Semantics Fusion
    Li, Yuhang
    Wei, Xiao
    Si, Yuke
    Wang, Longbiao
    Wang, Xiaobao
    Dang, Jianwu
    INTERSPEECH 2023, 2023, : 2123 - 2127
  • [6] Cross-Domain Adversarial Learning for Zero-Shot Classification
    Liu H.
    Zheng Q.
    Luo M.
    Zhao H.
    Xiao Y.
    Lü Y.
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2019, 56 (12): : 2521 - 2535
  • [7] Cross-domain mapping learning for transductive zero-shot learning
    Ding, Mingyu
    Wang, Zhe
    Lu, Zhiwu
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2019, 187
  • [8] Zero-Shot Slot Filling with Slot-Prefix Prompting and Attention Relationship Descriptor
    Luo, Qiaoyang
    Liu, Lingqiao
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 11, 2023, : 13344 - 13352
  • [9] Leveraging Slot Descriptions for Zero-Shot Cross-Domain Dialogue State Tracking
    Lin, Zhaojiang
    Liu, Bing
    Moon, Seungwhan
    Crook, Paul
    Zhou, Zhenpeng
    Wang, Zhiguang
    Yu, Zhou
    Madotto, Andrea
    Cho, Eunjoon
    Subba, Rajen
    2021 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL-HLT 2021), 2021, : 5640 - 5648
  • [10] System alignment supports cross-domain learning and zero-shot generalisation
    Aho, Kaarina
    Roads, Brett D.
    Love, Bradley C.
    COGNITION, 2022, 227