Cross-domain mapping learning for transductive zero-shot learning

被引:2
|
作者
Ding, Mingyu [1 ]
Wang, Zhe [2 ]
Lu, Zhiwu [1 ]
机构
[1] Renmin Univ China, Beijing, Peoples R China
[2] SenseTime Grp Ltd, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Zero-shot learning; Semantic autoencoder; Domain adaption; Transductive learning;
D O I
10.1016/j.cviu.2019.07.004
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Zero-shot learning (ZSL) aims to learn a projection function from a visual feature space to a semantic embedding space or reverse. The main challenge of ZSL is the domain shift problem where the unseen test data has a large gap with the seen training data. Transductive ZSL based methods alleviate this problem by learning from both labeled data and unlabeled data to capture their common semantic information. In this paper, we propose a framework to learn a robust cross-domain mapping for transductive ZSL with an extremely efficient algorithm for model optimization. Combining with a deep model, we formulate the cross domain mapping as a general loss function that optimizes both the projection function and discriminative visual features simultaneously in an end-to-end manner. Extensive experiments on five benchmark datasets show that the proposed Cross-Domain Mapping (CDM) model outperforms the state-of-the-art.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Learning cross-domain semantic-visual relationships for transductive zero-shot learning
    Lv, Fengmao
    Zhang, Jianyang
    Yang, Guowu
    Feng, Lei
    Yu, Yufeng
    Duan, Lixin
    [J]. PATTERN RECOGNITION, 2023, 141
  • [2] Cross-Domain Adversarial Learning for Zero-Shot Classification
    Liu H.
    Zheng Q.
    Luo M.
    Zhao H.
    Xiao Y.
    Lü Y.
    [J]. Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2019, 56 (12): : 2521 - 2535
  • [3] System alignment supports cross-domain learning and zero-shot generalisation
    Aho, Kaarina
    Roads, Brett D.
    Love, Bradley C.
    [J]. COGNITION, 2022, 227
  • [4] Adversarial strategy for transductive zero-shot learning
    Liu, Youfa
    Du, Bo
    Ni, Fuchuan
    [J]. INFORMATION SCIENCES, 2021, 578 : 750 - 761
  • [5] Bidirectional generative transductive zero-shot learning
    Xinpeng Li
    Dan Zhang
    Mao Ye
    Xue Li
    Qiang Dou
    Qiao Lv
    [J]. Neural Computing and Applications, 2021, 33 : 5313 - 5326
  • [6] Bidirectional generative transductive zero-shot learning
    Li, Xinpeng
    Zhang, Dan
    Ye, Mao
    Li, Xue
    Dou, Qiang
    Lv, Qiao
    [J]. NEURAL COMPUTING & APPLICATIONS, 2021, 33 (10): : 5313 - 5326
  • [7] Transductive Learning for Zero-Shot Object Detection
    Rahman, Shafin
    Khan, Salman
    Barnes, Nick
    [J]. 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 6081 - 6090
  • [8] Holistically Associated Transductive Zero-Shot Learning
    Xu, Yangyang
    Xu, Xuemiao
    Han, Guoqiang
    He, Shengfeng
    [J]. IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, 2022, 14 (02) : 437 - 447
  • [9] Transductive Unbiased Embedding for Zero-Shot Learning
    Song, Jie
    Shen, Chengchao
    Yang, Yezhou
    Liu, Yang
    Song, Mingli
    [J]. 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 1024 - 1033
  • [10] Feature Generation Approach with Indirect Domain Adaptation for Transductive Zero-shot Learning
    Huang S.
    Yang W.-L.
    Zhang Y.
    Zhang X.-H.
    Yang D.
    [J]. Ruan Jian Xue Bao/Journal of Software, 2022, 33 (11): : 4268 - 4284