Generative Zero-Shot Prompt Learning for Cross-Domain Slot Filling with Inverse Prompting

被引:0
|
作者
Li, Xuefeng [1 ]
Wang, Liwen [1 ]
Dong, Guanting [1 ]
He, Keqing [2 ]
Zhao, Jinzheng [3 ]
Lei, Hao [1 ]
Liu, Jiachi [1 ]
Xu, Weiran [1 ]
机构
[1] Beijing Univ Posts & Telecommun, Beijing, Peoples R China
[2] Meituan Grp, Beijing, Peoples R China
[3] Univ Surrey, Sch Comp Sci & Elect Engn, Guildford, England
基金
国家重点研发计划;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Zero-shot cross-domain slot filling aims to transfer knowledge from the labeled source domain to the unlabeled target domain. Existing models either encode slot descriptions and examples or design handcrafted question templates using heuristic rules, suffering from poor generalization capability or robustness. In this paper, we propose a generative zero-shot prompt learning framework for cross-domain slot filling, both improving generalization and robustness than previous work. Besides, we introduce a novel inverse prompting strategy to distinguish different slot types to avoid the multiple prediction problem, and an efficient prompt tuning strategy to boost higher performance by only training fewer prompt parameters. Experiments and analysis demonstrate the effectiveness of our proposed framework, especially huge improvements (+13.44% F1) on the unseen slots.(1)
引用
收藏
页码:825 / 834
页数:10
相关论文
共 50 条
  • [21] Dynamic Momentum Adaptation for Zero-Shot Cross-Domain Crowd Counting
    Wu, Qiangqiang
    Wan, Jia
    Chan, Antoni B.
    PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, : 658 - 666
  • [22] A Cross-Domain Semi-Supervised Zero-Shot Learning Model for the Classification of Hyperspectral Images
    Ranjan, Pallavi
    Gupta, Gautam
    JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2023, 51 (10) : 1991 - 2005
  • [23] A Cross-Domain Semi-Supervised Zero-Shot Learning Model for the Classification of Hyperspectral Images
    Pallavi Ranjan
    Gautam Gupta
    Journal of the Indian Society of Remote Sensing, 2023, 51 : 1991 - 2005
  • [24] Generalized Zero-Shot Domain Adaptation for Unsupervised Cross-Domain PolSAR Image Classification
    Gui, Rong
    Xu, Xin
    Yang, Rui
    Deng, Kailiang
    Hu, Jun
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 270 - 283
  • [25] GenQREnsemble: Zero-Shot LLM Ensemble Prompting for Generative Query Reformulation
    Dhole, Kaustubh D.
    Agichtein, Eugene
    ADVANCES IN INFORMATION RETRIEVAL, ECIR 2024, PT III, 2024, 14610 : 326 - 335
  • [26] HybridPrompt: Domain-Aware Prompting for Cross-Domain Few-Shot Learning
    Wu, Jiamin
    Zhang, Tianzhu
    Zhang, Yongdong
    International Journal of Computer Vision, 132 (12): : 5681 - 5697
  • [27] Zero-shot Generative Model Adaptation via Image-specific Prompt Learning
    Guo, Jiayi
    Wang, Chaofei
    Wu, You
    Zhang, Eric
    Wang, Kai
    Xu, Xingqian
    Song, Shiji
    Shi, Humphrey
    Huang, Gao
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 11494 - 11503
  • [28] HybridPrompt: Domain-Aware Prompting for Cross-Domain Few-Shot Learning
    Wu, Jiamin
    Zhang, Tianzhu
    Zhang, Yongdong
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2024, 132 (12) : 5681 - 5697
  • [29] Bidirectional generative transductive zero-shot learning
    Li, Xinpeng
    Zhang, Dan
    Ye, Mao
    Li, Xue
    Dou, Qiang
    Lv, Qiao
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (10): : 5313 - 5326
  • [30] A Joint Generative Model for Zero-Shot Learning
    Gao, Rui
    Hou, Xingsong
    Qin, Jie
    Liu, Li
    Zhu, Fan
    Zhang, Zhao
    COMPUTER VISION - ECCV 2018 WORKSHOPS, PT IV, 2019, 11132 : 631 - 646