Multi-parameter optimization of NPP simulation models using enhanced particle swarm method

被引:0
|
作者
Li, Zikang [1 ,2 ]
Wang, Hang [1 ,2 ]
Fei, Li [3 ]
Peng, Minjun [1 ,2 ]
Xian, Zhang [3 ]
Zhou, Gui [1 ,2 ]
机构
[1] Harbin Engn Univ, Key Subject Lab Nucl Safety & Simulat Technol, Harbin 150001, Peoples R China
[2] Minist Ind & Informat Technol, Key Lab Nucl Safety & Adv Nucl Energy Technol, Harbin 150001, Peoples R China
[3] China Nucl Power Operat Technol Corp Ltd, Wuhan 430000, Peoples R China
关键词
Nuclear power plant simulation model; Improved particle swarm algorithm; Parameter optimization; System-level optimization; Digital twin;
D O I
10.1016/j.pnucene.2025.105671
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
This paper delves into the optimization of simulation models for large-scale complex dynamic systems that couple multiple disciplines such as nuclear physics, heat transfer, and fluid mechanics, within the context of digital transformation in nuclear power. An enhanced particle swarm optimization (PSO) algorithm-based multi- parameter optimization method is proposed. This method integrates various strategies to improve the simulation accuracy of system-level models in replicating the operational characteristics of real systems. The effectiveness of this method is demonstrated through experiments on simulation models of the reactor coolant system and the chemical and volume control system within a full-range simulator. Post-optimization, the errors of key parameters are reduced to within 2%. This approach not only aids researchers in refining parameter design during the model development phase but also enables automatic parameter adjustments based on the actual system status after deployment. It meets the needs for online optimization and rapid tracking of actual system states in the application of nuclear power digital twin models.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] PARAMETER ESTIMATION TO AN ANEMIA MODEL USING THE PARTICLE SWARM OPTIMIZATION
    Ahmad, Arshed A.
    Sari, Murat
    SIGMA JOURNAL OF ENGINEERING AND NATURAL SCIENCES-SIGMA MUHENDISLIK VE FEN BILIMLERI DERGISI, 2019, 37 (04): : 1331 - 1343
  • [42] Parameter Selection for Particle Swarm Optimization Based on Stochastic Multi-objective Optimization
    Xu, Ming
    Gu, JiangPing
    2015 CHINESE AUTOMATION CONGRESS (CAC), 2015, : 2074 - 2079
  • [43] An intelligent control method for a large multi-parameter environmental simulation cabin
    Li Ke
    Liu Wangkai
    Wang Jun
    Huang Yong
    Chinese Journal of Aeronautics, 2013, 26 (06) : 1360 - 1369
  • [44] A Multi-parameter Rapid Optimization Method of Inverter-based Microgrid
    Yan, Shijie
    Yan, Weihang
    Wang, Rui
    Gao, Wenzhong
    2018 IEEE/PES TRANSMISSION AND DISTRIBUTION CONFERENCE AND EXPOSITION (T&D), 2018,
  • [45] MULTI-PARAMETER STRUCTURAL SHAPE OPTIMIZATION BY FINITE-ELEMENT METHOD
    DEMS, K
    MROZ, Z
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1978, 13 (02) : 247 - 263
  • [46] Multi-Parameter Structural Topology Optimization Method Based On Deep Learning
    Chu, Zunkang
    Yu, Haiyan
    Gao, Ze
    Rao, Weixiong
    Tongji Daxue Xuebao/Journal of Tongji University, 2024, 52 : 20 - 28
  • [47] An intelligent control method for a large multi-parameter environmental simulation cabin
    Li Ke
    Liu Wangkai
    Wang Jun
    Huang Yong
    CHINESE JOURNAL OF AERONAUTICS, 2013, 26 (06) : 1360 - 1369
  • [48] Windspeed prediction method based on SVR and multi-parameter optimization of GA
    Zhu X.-X.
    Xu B.-C.
    Jiao H.-C.
    Han Z.-H.
    Xu, Bo-Chao, 1600, Editorial Department of Electric Machines and Control (21): : 70 - 75
  • [49] An intelligent control method for a large multi-parameter environmental simulation cabin
    Li Ke
    Liu Wangkai
    Wang Jun
    Huang Yong
    Chinese Journal of Aeronautics , 2013, (06) : 1360 - 1369
  • [50] Parameter estimation for chaotic systems with a Drift Particle Swarm Optimization method
    Sun, Jun
    Zhao, Ji
    Wu, Xiaojun
    Fang, Wei
    Cai, Yujie
    Xu, Wenbo
    PHYSICS LETTERS A, 2010, 374 (28) : 2816 - 2822