Multi-parameter optimization of NPP simulation models using enhanced particle swarm method

被引:0
|
作者
Li, Zikang [1 ,2 ]
Wang, Hang [1 ,2 ]
Fei, Li [3 ]
Peng, Minjun [1 ,2 ]
Xian, Zhang [3 ]
Zhou, Gui [1 ,2 ]
机构
[1] Harbin Engn Univ, Key Subject Lab Nucl Safety & Simulat Technol, Harbin 150001, Peoples R China
[2] Minist Ind & Informat Technol, Key Lab Nucl Safety & Adv Nucl Energy Technol, Harbin 150001, Peoples R China
[3] China Nucl Power Operat Technol Corp Ltd, Wuhan 430000, Peoples R China
关键词
Nuclear power plant simulation model; Improved particle swarm algorithm; Parameter optimization; System-level optimization; Digital twin;
D O I
10.1016/j.pnucene.2025.105671
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
This paper delves into the optimization of simulation models for large-scale complex dynamic systems that couple multiple disciplines such as nuclear physics, heat transfer, and fluid mechanics, within the context of digital transformation in nuclear power. An enhanced particle swarm optimization (PSO) algorithm-based multi- parameter optimization method is proposed. This method integrates various strategies to improve the simulation accuracy of system-level models in replicating the operational characteristics of real systems. The effectiveness of this method is demonstrated through experiments on simulation models of the reactor coolant system and the chemical and volume control system within a full-range simulator. Post-optimization, the errors of key parameters are reduced to within 2%. This approach not only aids researchers in refining parameter design during the model development phase but also enables automatic parameter adjustments based on the actual system status after deployment. It meets the needs for online optimization and rapid tracking of actual system states in the application of nuclear power digital twin models.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] A multi-parameter calibration method for the numerical simulation of morphodynamic problems
    Evangelista, Stefania
    Giovinco, Gaspare
    Kocaman, Selahattin
    JOURNAL OF HYDROLOGY AND HYDROMECHANICS, 2017, 65 (02) : 175 - 182
  • [22] A Survivability Enhanced Swarm Robotic Searching System Using Multi-objective Particle Swarm Optimization
    Yuen, Cheuk Ho
    Woo, Kam Tim
    ADVANCES IN SWARM INTELLIGENCE, ICSI 2017, PT II, 2017, 10386 : 167 - 175
  • [23] Model Parameter Identification for Lithium Batteries Using the Coevolutionary Particle Swarm Optimization Method
    Yu, Zhihao
    Xiao, Linjing
    Li, Hongyu
    Zhu, Xuli
    Huai, Ruituo
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2017, 64 (07) : 5690 - 5700
  • [24] Multi-parameter optimization of lime composite design using a modified downhill simplex method
    Koci, Vaclav
    Koci, Jan
    Cachova, Monika
    Vejmelkova, Eva
    Cerny, Robert
    COMPOSITES PART B-ENGINEERING, 2016, 93 : 184 - 189
  • [25] On-line mechanical life prediction method for a conventional circuit breaker based on multi-parameter particle swarm optimization-support vector regression using vibration detection
    Sun, Shuguang
    Wen, Zhitao
    Zhang, Wei
    Wang, Jingqin
    Gao, Hui
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2022, 33 (09)
  • [26] PARAMETER OPTIMIZATION OF THE FORGING AND FORMING PROCESS USING PARTICLE SWARM OPTIMIZATION
    Li N.
    International Journal of Mechatronics and Applied Mechanics, 2022, 2022 (11): : 249 - 258
  • [27] Electrochemical machining process parameter optimization using particle swarm optimization
    Jegan, Thankaraj Mariapushpam Chenthil
    Ravindran, Durairaj
    COMPUTATIONAL INTELLIGENCE, 2017, 33 (04) : 1019 - 1037
  • [28] Control Parameter Optimization for a Microgrid System Using Particle Swarm Optimization
    Chung, Il-Yop
    Liu, Wenxin
    Cartes, David A.
    Schoder, Karl
    2008 IEEE INTERNATIONAL CONFERENCE ON SUSTAINABLE ENERGY TECHNOLOGIES (ICSET), VOLS 1 AND 2, 2008, : 837 - 842
  • [29] Formulation and parameter selection of multi-objective deterministic particle swarm for simulation-based optimization
    Pellegrini, Riccardo
    Serani, Andrea
    Leotardi, Cecilia
    Lemma, Umberto
    Campana, Emilio F.
    Diez, Matteo
    APPLIED SOFT COMPUTING, 2017, 58 : 714 - 731
  • [30] Multi-parameter regularization method for particle sizing of forward light scattering
    Lin, Chengjun
    Shen, Jianqi
    Wang, Tian'en
    JOURNAL OF MODERN OPTICS, 2017, 64 (08) : 787 - 798