Local second order regularity of solutions to elliptic Orlicz-Laplace equation

被引:0
|
作者
Karppinen, Arttu [1 ]
Sarsa, Saara [2 ]
机构
[1] Univ Warsaw, Fac Math Informat & Mech, Ul Banacha 2, PL-02097 Warsaw, Poland
[2] Univ Jyvaskyla, Dept Math & Stat, POB 35, FI-40014 Jyvaskyla, Finland
基金
芬兰科学院;
关键词
Orlicz-Laplace equation; Sobolev regularity; VARIATIONAL-PROBLEMS; DERIVATIVES; MINIMIZERS; INTEGRALS;
D O I
10.1016/j.na.2024.113737
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider Orlicz-Laplace equation - div ( '(|del|) |del| del ) = where is an Orlicz function and either = 0 or is an element of infinity . We prove local second order regularity results for the weak solutions of the Orlicz-Laplace equation. More precisely, we show that if is another Orlicz function that is close to in a suitable sense, then '(|del|) |del| del is an element of 1,2 loc . This work contributes to the building up of quantitative second order Sobolev regularity for solutions of nonlinear equations.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] On the second-order regularity of solutions to the parabolic p-Laplace equation
    Feng, Yawen
    Parviainen, Mikko
    Sarsa, Saara
    JOURNAL OF EVOLUTION EQUATIONS, 2022, 22 (01)
  • [2] On the second-order regularity of solutions to the parabolic p-Laplace equation
    Yawen Feng
    Mikko Parviainen
    Saara Sarsa
    Journal of Evolution Equations, 2022, 22
  • [3] A systematic approach on the second order regularity of solutions to the general parabolic p-Laplace equation
    Feng, Yawen
    Parviainen, Mikko
    Sarsa, Saara
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2023, 62 (07)
  • [4] A systematic approach on the second order regularity of solutions to the general parabolic p-Laplace equation
    Yawen Feng
    Mikko Parviainen
    Saara Sarsa
    Calculus of Variations and Partial Differential Equations, 2023, 62
  • [5] Differentiable solutions of the second order elliptic equation
    Otelbaev, Mukhtarbay
    Ospanov, Kordan Nauryzhanovich
    INTERNATIONAL CONFERENCE ON ANALYSIS AND APPLIED MATHEMATICS (ICAAM 2014), 2014, 1611 : 16 - 18
  • [6] ON THE REGULARITY AND EXISTENCE OF SOLUTIONS FOR SEMILINEAR ELLIPTIC EQUATIONS OF SECOND ORDER
    邓耀华
    ActaMathematicaScientia, 1987, (02) : 217 - 228
  • [7] Second order regularity for solutions to anisotropic degenerate elliptic equations
    Baratta, Daniel
    Muglia, Luigi
    Vuono, Domenico
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 435
  • [8] LOCAL REGULARITY RESULTS FOR SECOND ORDER ELLIPTIC SYSTEMS ON LIPSCHITZ DOMAINS
    Mitrea, Marius
    Taylor, Michael
    FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2009, 40 (02) : 175 - 184
  • [9] Optimal second order boundary regularity for solutions to p-Laplace equations
    Montoro, Luigi
    Muglia, Luigi
    Sciunzi, Berardino
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2025, 64 (02)
  • [10] Second Order Regularity for the A-Laplace Operator
    Challal, Samia
    Lyaghfouri, Abdeslem
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2010, 7 (03) : 283 - 296