Local second order regularity of solutions to elliptic Orlicz-Laplace equation

被引:0
|
作者
Karppinen, Arttu [1 ]
Sarsa, Saara [2 ]
机构
[1] Univ Warsaw, Fac Math Informat & Mech, Ul Banacha 2, PL-02097 Warsaw, Poland
[2] Univ Jyvaskyla, Dept Math & Stat, POB 35, FI-40014 Jyvaskyla, Finland
基金
芬兰科学院;
关键词
Orlicz-Laplace equation; Sobolev regularity; VARIATIONAL-PROBLEMS; DERIVATIVES; MINIMIZERS; INTEGRALS;
D O I
10.1016/j.na.2024.113737
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider Orlicz-Laplace equation - div ( '(|del|) |del| del ) = where is an Orlicz function and either = 0 or is an element of infinity . We prove local second order regularity results for the weak solutions of the Orlicz-Laplace equation. More precisely, we show that if is another Orlicz function that is close to in a suitable sense, then '(|del|) |del| del is an element of 1,2 loc . This work contributes to the building up of quantitative second order Sobolev regularity for solutions of nonlinear equations.
引用
收藏
页数:20
相关论文
共 50 条