A Practical High-Performance Lithium-Ion Capacitor Fabricated with Dual Graphene-Based Electrode Materials

被引:0
|
作者
Hu, Tao [1 ,2 ]
Zhang, Xiong [1 ,2 ,3 ]
Li, Chen [1 ,3 ]
Zhao, Shasha [1 ,2 ]
An, Yabin [1 ,2 ,3 ]
Zhang, Xiaohu [1 ,3 ]
Sun, Xianzhong [1 ,3 ]
Wang, Kai [1 ,2 ,3 ]
Ma, Yanwei [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Inst Elect Engn, State Key Lab High Dens Electromagnet Power & Syst, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Inst Elect Engn & Adv Electromagnet Drive Technol, Jinan 250013, Peoples R China
基金
中国国家自然科学基金;
关键词
energy density; graphene; lithium-ion capacitors; power density; self-propagating high-temperature synthesis; SOFT CARBON; STRATEGY; ANODE;
D O I
10.1002/admt.202500004
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Lithium-ion capacitors (LICs) hold great promise by merging the benefits of lithium-ion batteries and supercapacitors. However, their performance is frequently constrained by a disparity in the kinetic properties of the cathode and anode. This study introduces a dual graphene-based approach aimed at improving the efficiency and functionality of LICs and demonstrates the successful large-scale production of graphene (SHSG) using a self-propagating high-temperature synthesis method. In the cathode, SHSG forms a continuous graphene network, reducing interfacial resistance, enhancing conductivity and achieving a capacity of 85.9 mAh g-1. In the anode, SHSG improves ion diffusion and reaction interfaces, increasing capacity from 247.9 to 286.6 mAh g-1. A full LIC cell assembled with 10% SHSG in both electrodes demonstrates a peak energy density of 106.3 Wh kg-1 and retains 33 Wh kg-1 at 4.4 kW kg-1, which is calculated based on the total mass of the electrodes. Additionally, a 1100 F LIC pouch cell is developed, showcasing its potential for practical energy storage. This work underscores the transformative role of graphene in optimizing LICs and advancing energy storage technologies.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Bio-Phenolic Resin Derived Porous Carbon Materials for High-Performance Lithium-Ion Capacitor
    Cho, Er-Chieh
    Chang-Jian, Cai-Wan
    Lu, Cheng-Zhang
    Huang, Jen-Hsien
    Hsieh, Tzu-Hsien
    Wu, Nian-Jheng
    Lee, Kuen-Chan
    Hsu, Shih-Chieh
    Weng, Huei Chu
    POLYMERS, 2022, 14 (03)
  • [22] High-performance anode materials based on anthracite for lithium-ion battery applications
    Wang J.-J.
    Zhao H.-L.
    Hu T.
    Liu F.-Q.
    Gongcheng Kexue Xuebao/Chinese Journal of Engineering, 2020, 42 (07): : 884 - 893
  • [23] Graphene-based electrode materials for rechargeable lithium batteries
    Liang, Minghui
    Zhi, Linjie
    JOURNAL OF MATERIALS CHEMISTRY, 2009, 19 (33) : 5871 - 5878
  • [24] Nanostructured anode materials for high-performance lithium-ion batteries
    Xie, Jingjie
    Yin, Jing
    Xu, Lan
    Ahmed, Adnan
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 1008
  • [25] Disordered materials for high-performance lithium-ion batteries: A review
    Wang, Zhaoyang
    Du, Zijuan
    Wang, Luoqing
    He, Guanjie
    Parkin, Ivan P.
    Zhang, Yanfei
    Yue, Yuanzheng
    NANO ENERGY, 2024, 121
  • [26] High-Performance Anode Materials for Rechargeable Lithium-Ion Batteries
    Jun Lu
    Zhongwei Chen
    Feng Pan
    Yi Cui
    Khalil Amine
    Electrochemical Energy Reviews, 2018, 1 : 35 - 53
  • [27] High-Performance Anode Materials for Rechargeable Lithium-Ion Batteries
    Lu, Jun
    Chen, Zhongwei
    Pan, Feng
    Cui, Yi
    Amine, Khalil
    ELECTROCHEMICAL ENERGY REVIEWS, 2018, 1 (01) : 35 - 53
  • [28] Strongly anchored MnO nanoparticles on graphene as high-performance anode materials for lithium-ion batteries
    Qin, Yanliang
    Wang, Bowen
    Jiang, Sipeng
    Jiang, Qingsong
    Huang, Chenghao
    Chen, Hai Chao
    IONICS, 2020, 26 (07) : 3315 - 3323
  • [29] Strongly anchored MnO nanoparticles on graphene as high-performance anode materials for lithium-ion batteries
    Yanliang Qin
    Bowen Wang
    Sipeng Jiang
    Qingsong Jiang
    Chenghao Huang
    Hai Chao Chen
    Ionics, 2020, 26 : 3315 - 3323
  • [30] Functionalization of graphene oxide with naphthalenediimide diamine for high-performance cathode materials of lithium-ion batteries
    Song, Yidan
    Gao, Yuanrui
    Rong, Hongren
    Wen, Hao
    Sha, Yanyong
    Zhang, Hanping
    Liu, Hong-Jiang
    Liu, Qi
    SUSTAINABLE ENERGY & FUELS, 2018, 2 (04): : 803 - 810