Bio-Phenolic Resin Derived Porous Carbon Materials for High-Performance Lithium-Ion Capacitor

被引:10
|
作者
Cho, Er-Chieh [1 ]
Chang-Jian, Cai-Wan [2 ]
Lu, Cheng-Zhang [3 ]
Huang, Jen-Hsien [4 ]
Hsieh, Tzu-Hsien
Wu, Nian-Jheng [5 ]
Lee, Kuen-Chan [6 ,7 ]
Hsu, Shih-Chieh [8 ]
Weng, Huei Chu [9 ]
机构
[1] Taipei Med Univ, Sch Pharm, Dept Clin Pharm, Coll Pharm, 250 Wuxing St, Taipei 110, Taiwan
[2] I Shou Univ, Dept Mech & Automat Engn, 1,Sec 1,Syuecheng Rd, Kaohsiung 84001, Taiwan
[3] Ind Technol Res Inst, Mat & Chem Res Labs, 195 Chung Hsing Rd, Hsinchu 31040, Taiwan
[4] CPC Corp, Green Technol Res Inst, Dept Green Mat Technol, 2 Zuonan Rd, Kaohsiung 81126, Taiwan
[5] Univ Paris Saclay, Inst Sci Mol Orsay, CNRS, F-91405 Orsay, France
[6] Natl Taipei Univ Educ, Dept Sci Educ, 134,Sec 2,Heping Rd, Taipei 106, Taiwan
[7] Taipei Med Univ, Coll Med Sci & Technol, Taipei 110, Taiwan
[8] Tamkang Univ, Dept Chem & Mat Engn, 151 Yingzhuan Rd, New Taipei, Taiwan
[9] Chung Yuan Christian Univ, Dept Mech Engn, 200 Chungpei Rd, Taoyuan, Taiwan
关键词
biomass; porous carbon; Li4Ti5O12; supercapacitor; lithium-ion battery; OXYGEN FUNCTIONAL-GROUPS; ACTIVATED CARBON; GRAPHENE; BIOMASS; SUPERCAPACITORS; NITROGEN; SURFACE; ENERGY; HYBRID; NANOCOMPOSITES;
D O I
10.3390/polym14030575
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
In this article, hierarchical porous carbon (HPC) with high surface area of 1604.9 m(2)/g is prepared by the pyrolysis of rubberwood sawdust using CaCO3 as a hard template. The bio-oil pyrolyzed from the rubber sawdust, followed by the polymerization reaction to form resole phenolic resin, can be used as a carbon source to prepare HPC. The biomass-derived HPC shows a three-dimensionally interconnected morphology which can offer a continuous pathway for ionic transport. The symmetrical supercapacitors based on the as-prepared HPC were tested in 1.0 M tetraethylammonium tetrafluoroborate/propylene carbonate electrolyte. The results of electrochemical analysis show that the HPC-based supercapacitor exhibits a high specific capacitance of 113.3 F/g at 0.5 A/g with superior rate capability and cycling stability up to 5000 cycles. Hybrid lithium-ion capacitors (LICs) based on the HPC and Li4Ti5O12 (LTO) were also fabricated. The LICs have a maximum energy density of 113.3 Wh/kg at a power density of 281 W/kg. Moreover, the LIC also displays a remarkable cycling performance with a retention of 92.8% after 3000 cycles at a large current density of 0.75 A/g, suggesting great potential application in the energy storage of the LIC.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Bio-Phenolic Resin Derived Porous Carbon Materials for High-Performance Lithium-Ion Capacitor
    Department of Clinical Pharmacy, School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei City
    110, Taiwan
    不详
    84001, Taiwan
    不详
    31040, Taiwan
    不详
    81126, Taiwan
    不详
    91405, France
    不详
    106, Taiwan
    不详
    110, Taiwan
    不详
    25137, Taiwan
    不详
    32023, Taiwan
    Polym., 2022, 3
  • [2] Carbon materials for high-performance lithium-ion capacitor
    Zou, Kangyu
    Cai, Peng
    Cao, Xiaoyu
    Zou, Guoqiang
    Hou, Hongshuai
    Ji, Xiaobo
    CURRENT OPINION IN ELECTROCHEMISTRY, 2020, 21 : 31 - 39
  • [3] Bio-derived carbon nanostructures for high-performance lithium-ion batteries
    Bakierska, Monika
    Lis, Marcelina
    Pacek, Joanna
    Swietoslawski, Michal
    Gajewska, Marta
    Tata, Agnieszka
    Proniewicz, Edyta
    Molenda, Marcin
    CARBON, 2019, 145 : 426 - 432
  • [4] Porous silicon in carbon cages as high-performance lithium-ion battery anode Materials
    Zhang, Yaguang
    Du, Ning
    Zhu, Sijia
    Chen, Yifan
    Lin, Yangfan
    Wu, Shali
    Yang, Deren
    ELECTROCHIMICA ACTA, 2017, 252 : 438 - 445
  • [5] High-performance polyethylene separators for lithium-ion batteries modified by phenolic resin
    Gu, Qian-Qian
    Xue, Hong-Jin
    Li, Zhan-Wei
    Song, Jing-Chuan
    Sun, Zhao-Yan
    JOURNAL OF POWER SOURCES, 2021, 483
  • [6] Biomass derived porous carbon anode materials for lithium-ion batteries with high electrochemical performance
    Feng, Dandan
    Li, Yuanyuan
    Qin, Xiaozhuan
    Zheng, Liping
    Guo, Bingrun
    Dai, Weijie
    Song, Ningyu
    Liu, Lihua
    Xu, Yali
    Tang, Zhongfeng
    Gao, Tianzeng
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2024, 19 (03):
  • [7] Corncob-Derived Hierarchical Porous Activated Carbon for High-Performance Lithium-Ion Capacitors
    Yang, Shuhua
    Zhang, Le
    Sun, Jing
    Li, Kui
    Zhao, Songfang
    Zhao, Degang
    Wang, Jieqiang
    Yang, Chao
    Wang, Xiutong
    Cao, Bingqiang
    ENERGY & FUELS, 2020, 34 (12) : 16885 - 16892
  • [8] Bio-inspired 3D porous carbon nanosheets composite materials for high-performance lithium-ion batteries
    XiangYu Ding
    Qi Cao
    Sheng Zhu
    Qunjie Xu
    Yulin Min
    Journal of Nanoparticle Research, 2020, 22
  • [9] Bio-inspired 3D porous carbon nanosheets composite materials for high-performance lithium-ion batteries
    Ding, XiangYu
    Cao, Qi
    Zhu, Sheng
    Xu, Qunjie
    Min, Yulin
    JOURNAL OF NANOPARTICLE RESEARCH, 2020, 22 (01)
  • [10] Nitrogen-doped carbon nanofibers derived from phenolic-resin-based analogues for high-performance lithium-ion batteries
    Xue, Chunjian
    Liu, Yinpeng
    Zhao, Jinlian
    Li, Xiying
    Zhang, Jiwei
    Zhang, Jingwei
    Solid State Ionics, 2022, 376