Bio-Phenolic Resin Derived Porous Carbon Materials for High-Performance Lithium-Ion Capacitor

被引:11
|
作者
Cho, Er-Chieh [1 ]
Chang-Jian, Cai-Wan [2 ]
Lu, Cheng-Zhang [3 ]
Huang, Jen-Hsien [4 ]
Hsieh, Tzu-Hsien
Wu, Nian-Jheng [5 ]
Lee, Kuen-Chan [6 ,7 ]
Hsu, Shih-Chieh [8 ]
Weng, Huei Chu [9 ]
机构
[1] Taipei Med Univ, Sch Pharm, Dept Clin Pharm, Coll Pharm, 250 Wuxing St, Taipei 110, Taiwan
[2] I Shou Univ, Dept Mech & Automat Engn, 1,Sec 1,Syuecheng Rd, Kaohsiung 84001, Taiwan
[3] Ind Technol Res Inst, Mat & Chem Res Labs, 195 Chung Hsing Rd, Hsinchu 31040, Taiwan
[4] CPC Corp, Green Technol Res Inst, Dept Green Mat Technol, 2 Zuonan Rd, Kaohsiung 81126, Taiwan
[5] Univ Paris Saclay, Inst Sci Mol Orsay, CNRS, F-91405 Orsay, France
[6] Natl Taipei Univ Educ, Dept Sci Educ, 134,Sec 2,Heping Rd, Taipei 106, Taiwan
[7] Taipei Med Univ, Coll Med Sci & Technol, Taipei 110, Taiwan
[8] Tamkang Univ, Dept Chem & Mat Engn, 151 Yingzhuan Rd, New Taipei, Taiwan
[9] Chung Yuan Christian Univ, Dept Mech Engn, 200 Chungpei Rd, Taoyuan, Taiwan
关键词
biomass; porous carbon; Li4Ti5O12; supercapacitor; lithium-ion battery; OXYGEN FUNCTIONAL-GROUPS; ACTIVATED CARBON; GRAPHENE; BIOMASS; SUPERCAPACITORS; NITROGEN; SURFACE; ENERGY; HYBRID; NANOCOMPOSITES;
D O I
10.3390/polym14030575
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
In this article, hierarchical porous carbon (HPC) with high surface area of 1604.9 m(2)/g is prepared by the pyrolysis of rubberwood sawdust using CaCO3 as a hard template. The bio-oil pyrolyzed from the rubber sawdust, followed by the polymerization reaction to form resole phenolic resin, can be used as a carbon source to prepare HPC. The biomass-derived HPC shows a three-dimensionally interconnected morphology which can offer a continuous pathway for ionic transport. The symmetrical supercapacitors based on the as-prepared HPC were tested in 1.0 M tetraethylammonium tetrafluoroborate/propylene carbonate electrolyte. The results of electrochemical analysis show that the HPC-based supercapacitor exhibits a high specific capacitance of 113.3 F/g at 0.5 A/g with superior rate capability and cycling stability up to 5000 cycles. Hybrid lithium-ion capacitors (LICs) based on the HPC and Li4Ti5O12 (LTO) were also fabricated. The LICs have a maximum energy density of 113.3 Wh/kg at a power density of 281 W/kg. Moreover, the LIC also displays a remarkable cycling performance with a retention of 92.8% after 3000 cycles at a large current density of 0.75 A/g, suggesting great potential application in the energy storage of the LIC.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Hard Carbon Derived from A New Type Resorcinol/2-Thenaldehyde Resin as High-Performance Anode Materials for Lithium-Ion Batteries
    Lu, Qing
    Kong, Lingqian
    Liang, Bo
    Zhao, Jinsheng
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2022, 17 (12):
  • [22] Porous carbon nanotubes decorated with nanosized cobalt ferrite as anode materials for high-performance lithium-ion batteries
    Wang, Lingyan
    Zhuo, Linhai
    Cheng, Haiyang
    Zhang, Chao
    Zhao, Fengyu
    JOURNAL OF POWER SOURCES, 2015, 283 : 289 - 299
  • [23] Synthesis of Porous NiO Nanorods as High-Performance Anode Materials for Lithium-Ion Batteries
    Li, Qian
    Huang, Gang
    Yin, Dongming
    Wu, Yaoming
    Wang, Limin
    PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION, 2016, 33 (10) : 764 - 770
  • [24] SiGe porous nanorod arrays as high-performance anode materials for lithium-ion batteries
    Yu, Jingxue
    Du, Ning
    Wang, Jiazheng
    Zhang, Hui
    Yang, Deren
    JOURNAL OF ALLOYS AND COMPOUNDS, 2013, 577 : 564 - 568
  • [25] SiGe porous nanorod arrays as high-performance anode materials for lithium-ion batteries
    Yu, Jingxue
    Du, Ning
    Wang, Jiazheng
    Zhang, Hui
    Yang, Deren
    Yang, D. (mseyang@zju.edu.cn), 1600, Elsevier Ltd (577): : 564 - 568
  • [26] Synthesis of sulfur-doped porous carbon for high-performance lithium-ion batteries
    Sun, Yuzhen
    Ning, Guoqing
    Gao, Jinsen
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251
  • [27] Flexible Porous Silicon/Carbon Fiber Anode for High-Performance Lithium-Ion Batteries
    Liu, Gang
    Zhu, Xiaoyi
    Li, Xiaohua
    Jia, Dongchen
    Li, Dong
    Ma, Zhaoli
    Li, Jianjiang
    MATERIALS, 2022, 15 (09)
  • [28] Gelatin and sodium alginate derived carbon/silicon composites as high-performance anode materials for lithium-ion batteries
    Lin, Liyang
    Li, Mengjun
    Yan, Ying
    Tian, Yuanhao
    Qing, Juan
    Chen, Susu
    DALTON TRANSACTIONS, 2024, 53 (41) : 16871 - 16878
  • [29] Mesoporous carbon material as cathode for high performance lithium-ion capacitor
    Zhang, Jin
    Wang, Jing
    Shi, Zhiqiang
    Xu, Zhiwei
    CHINESE CHEMICAL LETTERS, 2018, 29 (04) : 620 - 623
  • [30] Nitrogen-Doped Porous Carbon Derived from Coal for High-Performance Dual-Carbon Lithium-Ion Capacitors
    Jiang, Jiangmin
    Shen, Qianqian
    Chen, Ziyu
    Wang, Shijing
    NANOMATERIALS, 2023, 13 (18)