Compensational Effects of 4-tert-Butylpyridine Additive for PTAA Hole Transport Material Using a Spontaneous Perovskite Passivator in Perovskite Solar Cells

被引:1
|
作者
Nishimura, Naoyuki [1 ]
Kanda, Hiroyuki [1 ]
Murakami, Takurou N. [1 ]
机构
[1] Natl Inst Adv Ind Sci & Technol, Tsukuba, Ibaraki 3058565, Japan
来源
ACS APPLIED ENERGY MATERIALS | 2025年 / 8卷 / 05期
关键词
cesium-formamidine-lead-iodide (CsFAPbI(3)); thermally stable; alkyl-primary-ammonium; bis(trifluoromethylsulfonyl)amide; photovoltaics; SPIRO-OMETAD; HIGH-EFFICIENCY; P-DOPANT; LAYER; PERFORMANCE; STABILITY; IMPACT; MEOTAD;
D O I
10.1021/acsaem.4c02868
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Development of hole transport materials (HTMs) plays an important role in the advancement of perovskite solar cells (PSCs). Typical HTMs are organic semiconductors; dopants are required to enhance the hole collection properties of PSCs. One typical set of dopants used is lithium bis(trifluoromethylsulfonyl)imide (Li-TFSI) combined with 4-tert-butylpyridine (TBP). The primary role of TBP is to dissolve Li-TFSI, yet the effects of TBP independent of those of Li-TFSI remain elusive, especially when combined with poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] (PTAA), a promising HTM possessing the advantage of thermal stability. To investigate the effects of TBP, we employed n-octylammonium TFSI (OA-TFSI) room-temperature ionic liquid (RTIL) additive for PTAA with a calibrated TBP concentration. The recently emerged OA-TFSI additive functions as a spontaneous perovskite passivator; during the deposition of the HTM solution containing the OA-TFSI additive, the OA cations spontaneously passivate the perovskite, effectively suppressing defects on the perovskite surface. As OA-TFSI is an RTIL, the necessity of TBP for dissolving OA-TFSI in the HTM solution is potentially negated, unlike Li-TFSI. Indeed, the OA-TFSI without TBP exhibited relatively high-power conversion efficiencies (PCEs) in PTAA-based n-i-p-structured PSCs of up to 22.0%, exploiting the effective spontaneous perovskite passivation. However, TBP addition to the HTM solution resulted in compensational effects on the photovoltaic (PV) performance. TBP addition improved the uniformity of the PTAA HTM layer, contributing to an increased fill factor, and TBP addition presumably hampered spontaneous perovskite passivation and caused energy loss between the perovskite and PTAA, which decreased the open-circuit voltage. Consequently, the PSCs with optimal TBP addition exhibited a PV performance similar to that without TBP addition (e.g., highest PCE of 21.6%). The obtained insights provide valuable guidance regarding the use of additives for PTAA HTMs, which can be a bottleneck for PTAA-based PSC development, thus contributing to the further development of PSCs.
引用
收藏
页码:2802 / 2809
页数:8
相关论文
共 50 条
  • [41] Phenoxazine-benzimidazolium ionic hole transport material for perovskite solar cells
    Shin, Jong Chan
    Kim, Moonhoe
    Lee, Minjae
    Yang, JungYup
    BULLETIN OF THE KOREAN CHEMICAL SOCIETY, 2023, 44 (10) : 827 - 830
  • [42] Influence of hole transport material ionization energy on the performance of perovskite solar cells
    Danekamp, Benedikt
    Droseros, Nikolaos
    Tsokkou, Demetra
    Brehm, Verena
    Boix, Pablo P.
    Sessolo, Michele
    Banerji, Natalie
    Bolink, Henk J.
    JOURNAL OF MATERIALS CHEMISTRY C, 2019, 7 (03) : 523 - 527
  • [43] Carbon quantum dots as new hole transport material for perovskite solar cells
    Paulo, Sofia
    Stoica, Georgiana
    Cambarau, Werther
    Martinez-Ferrero, Eugenia
    Palornares, Emilio
    SYNTHETIC METALS, 2016, 222 : 17 - 22
  • [44] On the efficiency of perovskite solar cells with a back reflector: effect of a hole transport material
    Bonnin-Ripoll, F.
    Martynov, Ya B.
    Nazmitdinov, R. G.
    Cardona, G.
    Pujol-Nadal, R.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2021, 23 (46) : 26250 - 26262
  • [45] Pyridine-triphenylamine hole transport material for inverted perovskite solar cells
    Shuang Ma
    Xianfu Zhang
    Xuepeng Liu
    Rahim Ghadari
    Molang Cai
    Yong Ding
    Muhammad Mateen
    Songyuan Dai
    Journal of Energy Chemistry, 2021, 54 (03) : 395 - 402
  • [46] Analysis of highly efficient perovskite solar cells with inorganic hole transport material
    Kabir, I
    Mahmood, S. A.
    CHINESE PHYSICS B, 2019, 28 (12)
  • [47] Investigation on a dopant-free hole transport material for perovskite solar cells
    Wu, Fei
    Wang, Baohua
    Wang, Rui
    Shan, Yahan
    Liu, Dingyu
    Wong, King Young
    Chen, Tao
    Zhu, Linna
    RSC ADVANCES, 2016, 6 (73) : 69365 - 69369
  • [48] Analysis of highly efficient perovskite solar cells with inorganic hole transport material
    I Kabir
    S A Mahmood
    Chinese Physics B, 2019, 28 (12) : 397 - 403
  • [49] Pentacene as a hole transport material for high performance planar perovskite solar cells
    Yang, Xiude
    Wang, Gang
    Liu, Debei
    Yao, Yanqing
    Zhou, Guangdong
    Li, Ping
    Wu, Bo
    Rao, Xi
    Song, Qunliang
    CURRENT APPLIED PHYSICS, 2018, 18 (10) : 1095 - 1100
  • [50] Influence of hole transport material/metal contact interface on perovskite solar cells
    Lei, Lei
    Zhang, Shude
    Yang, Songwang
    Li, Xiaomin
    Yu, Yu
    Wei, Qingzhu
    Ni, Zhichun
    Li, Ming
    NANOTECHNOLOGY, 2018, 29 (25)