p(x)-BIHARMONIC EQUATIONS INVOLVING (h, r(x))-HARDY SINGULAR COEFFICIENTS WITH NO-FLUX BOUNDARY CONDITIONS

被引:0
|
作者
Liu, Jian [1 ]
Zhao, Zengqin [2 ]
机构
[1] Shandong Univ Finance & Econ, Sch Stat & Math, Jinan 250014, Peoples R China
[2] Qufu Normal Univ, Sch Math Sci, Qufu 273165, Peoples R China
关键词
p(x)-biharmonic equations; (h; r(x))-Hardy potentials; variable exponent spaces; INEQUALITIES; EXISTENCE;
D O I
10.12775/TMNA.2024.016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we investigate p(x)-biharmonic equations involving two kinds of different Hardy potentials, in which the r(x)-Hardy potentials are seldom mentioned in previous papers. New criteria for the existence of generalized solutions are reestablished when the nonlinear terms satisfying appropriate assumptions. The results are based on variational methods and the theory of variable exponent Sobolev spaces.
引用
收藏
页码:561 / 576
页数:16
相关论文
共 50 条