Existence results for perturbed weighted p(x)-biharmonic problem with Navier boundary conditions

被引:4
|
作者
Mbarki, Lamine [1 ]
机构
[1] Univ Tunis El Manar, Fac Sci, Dept Math, Tunis, Tunisia
关键词
p(x)-biharmonic; generalized Sobolev and Lebesgue space; Navier boundary conditions; mountain pass theorem; Ekeland variational principle;
D O I
10.1080/17476933.2020.1729140
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we are interested in the study of the following problem with Navier boundary conditions Delta(vertical bar x vertical bar(p(x))vertical bar Delta u vertical bar(p(x)-2) Delta u) = lambda V(x)vertical bar u vertical bar(q(x)-2)u in Omega, u = Delta u = 0 on partial derivative Omega, where Omega is a smooth bounded domain in R-n, lambda > 0, the potential V is in some generalized Sobolev space, and p, q : Omega -> [1,infinity) are continuous functions. The main tools used here are based on the variational method combined with the Mountain Pass theorem and Ekeland variational principle.
引用
收藏
页码:569 / 582
页数:14
相关论文
共 50 条
  • [1] p(x)-biharmonic problem with Navier boundary conditions
    Hammou, Mustapha Ait
    RIVISTA DI MATEMATICA DELLA UNIVERSITA DI PARMA, 2023, 14 (01): : 33 - 44
  • [2] On a Kirchhoff Singular p(x)-Biharmonic Problem with Navier Boundary Conditions
    Kefi, Khaled
    Saoudi, Kamel
    Al-Shomrani, Mohammed Mosa
    ACTA APPLICANDAE MATHEMATICAE, 2020, 170 (01) : 661 - 676
  • [3] THE EXISTENCE OF WEAK SOLUTIONS OF p(x)-BIHARMONIC EQUATION WITH NAVIER BOUNDARY CONDITIONS
    Zhao, Yanyan
    ADVANCES IN DIFFERENTIAL EQUATIONS AND CONTROL PROCESSES, 2012, 9 (02): : 115 - 121
  • [4] Multiplicity results for p(x)-biharmonic equations with Navier boundary conditions
    Heidarkhani, Shapour
    Ferrara, Massimiliano
    Salari, Amjad
    Caristi, Giuseppe
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2016, 61 (11) : 1494 - 1516
  • [5] EXISTENCE OF THREE SOLUTIONS FOR A NAVIER BOUNDARY VALUE PROBLEM INVOLVING THE p(x)-BIHARMONIC
    Yin, Honghui
    Liu, Ying
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2013, 50 (06) : 1817 - 1826
  • [6] On a p(x)-biharmonic problem with Navier boundary condition
    Zhou, Zheng
    BOUNDARY VALUE PROBLEMS, 2018,
  • [7] Existence of one weak solution for p(x)-biharmonic equations with Navier boundary conditions
    S. Heidarkhani
    G. A. Afrouzi
    S. Moradi
    G. Caristi
    Bin Ge
    Zeitschrift für angewandte Mathematik und Physik, 2016, 67
  • [8] Existence of one weak solution for p(x)-biharmonic equations with Navier boundary conditions
    Heidarkhani, S.
    Afrouzi, G. A.
    Moradi, S.
    Caristi, G.
    Ge, Bin
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2016, 67 (03):
  • [9] Existence of Solutions for p(x)-Triharmonic Problem with Navier Boundary Conditions
    Xiaohuan Zhao
    Qing Miao
    Journal of Nonlinear Mathematical Physics, 32 (1)
  • [10] Existence of solutions for a p(x)-biharmonic problem under Neumann boundary conditions
    Hsini, Mounir
    Irzi, Nawal
    Kefi, Khaled
    APPLICABLE ANALYSIS, 2021, 100 (10) : 2188 - 2199