Multimodal deep learning approaches for precision oncology: a comprehensive review

被引:0
|
作者
Yang, Huan [1 ]
Yang, Minglei [2 ]
Chen, Jiani [3 ]
Yao, Guocong [1 ,4 ]
Zou, Quan [1 ,5 ]
Jia, Linpei [6 ]
机构
[1] Univ Elect Sci & Technol China, Yangtze Delta Reg Inst Quzhou, Chengdian Rd, Quzhou 324000, Zhejiang, Peoples R China
[2] Zhengzhou Univ, Affiliated Hosp 1, Dept Pathol, Jianshe Dong Rd, Zhengzhou 450052, Henan, Peoples R China
[3] Xiamen Univ Technol, Sch Optoelect & Commun Engn, Ligong Rd, Xiamen 361024, Fujian, Peoples R China
[4] Henan Univ, Sch Comp & Informat Engn, Jinming Ave, Kaifeng 475001, Henan, Peoples R China
[5] Univ Elect Sci & Technol China, Inst Fundamental & Frontier Sci, Sect 2,North Jianshe Rd, Chengdu 610054, Sichuan, Peoples R China
[6] Capital Med Univ, Xuanwu Hosp, Dept Nephrol, Changchun St, Beijing 100053, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
multimodal; deep learning; cancer; integration; LUNG-CANCER; PREDICTION; CT;
D O I
10.1093/bib/bbae699
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The burgeoning accumulation of large-scale biomedical data in oncology, alongside significant strides in deep learning (DL) technologies, has established multimodal DL (MDL) as a cornerstone of precision oncology. This review provides an overview of MDL applications in this field, based on an extensive literature survey. In total, 651 articles published before September 2024 are included. We first outline publicly available multimodal datasets that support cancer research. Then, we discuss key DL training methods, data representation techniques, and fusion strategies for integrating multimodal data. The review also examines MDL applications in tumor segmentation, detection, diagnosis, prognosis, treatment selection, and therapy response monitoring. Finally, we critically assess the limitations of current approaches and propose directions for future research. By synthesizing current progress and identifying challenges, this review aims to guide future efforts in leveraging MDL to advance precision oncology.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Multimodal Medical Imaging Using Modern Deep Learning Approaches
    Chanumolu, Rahul
    Alla, Likhita
    Chirala, Pavankumar
    Chennampalli, Naveen Chand
    Kolla, Bhanu Prakash
    PROCEEDINGS OF 3RD IEEE CONFERENCE ON VLSI DEVICE, CIRCUIT AND SYSTEM (IEEE VLSI DCS 2022), 2022, : 184 - 187
  • [42] EmoNets: Multimodal deep learning approaches for emotion recognition in video
    Kahou, Samira Ebrahimi
    Bouthillier, Xavier
    Lamblin, Pascal
    Gulcehre, Caglar
    Michalski, Vincent
    Konda, Kishore
    Jean, Sebastien
    Froumenty, Pierre
    Dauphin, Yann
    Boulanger-Lewandowski, Nicolas
    Ferrari, Raul Chandias
    Mirza, Mehdi
    Warde-Farley, David
    Courville, Aaron
    Vincent, Pascal
    Memisevic, Roland
    Pal, Christopher
    Bengio, Yoshua
    JOURNAL ON MULTIMODAL USER INTERFACES, 2016, 10 (02) : 99 - 111
  • [43] EmoNets: Multimodal deep learning approaches for emotion recognition in video
    Samira Ebrahimi Kahou
    Xavier Bouthillier
    Pascal Lamblin
    Caglar Gulcehre
    Vincent Michalski
    Kishore Konda
    Sébastien Jean
    Pierre Froumenty
    Yann Dauphin
    Nicolas Boulanger-Lewandowski
    Raul Chandias Ferrari
    Mehdi Mirza
    David Warde-Farley
    Aaron Courville
    Pascal Vincent
    Roland Memisevic
    Christopher Pal
    Yoshua Bengio
    Journal on Multimodal User Interfaces, 2016, 10 : 99 - 111
  • [44] Video description: A comprehensive survey of deep learning approaches
    Rafiq, Ghazala
    Rafiq, Muhammad
    Choi, Gyu Sang
    ARTIFICIAL INTELLIGENCE REVIEW, 2023, 56 (11) : 13293 - 13372
  • [45] Deep Learning Approaches for Autonomous Driving a Comprehensive Survey
    Vasanthamma
    Dubey, Manoj
    Kantharaju, Kanaparthi
    Kollipara, Naga Venkateshwara Rao
    Sumalatha, M.
    METALLURGICAL & MATERIALS ENGINEERING, 2025, 31 (01) : 346 - 354
  • [46] A Comprehensive Survey of Deep Learning Approaches in Image Processing
    Trigka, Maria
    Dritsas, Elias
    SENSORS, 2025, 25 (02)
  • [47] Video description: A comprehensive survey of deep learning approaches
    Ghazala Rafiq
    Muhammad Rafiq
    Gyu Sang Choi
    Artificial Intelligence Review, 2023, 56 : 13293 - 13372
  • [48] Multimodal deep learning enhances diagnostic precision in left ventricular hypertrophy
    Soto, Jessica Torres
    Hughes, J. Weston
    Sanchez, Pablo Amador
    Perez, Marco
    Ouyang, David
    Ashley, Euan A.
    EUROPEAN HEART JOURNAL - DIGITAL HEALTH, 2022, 3 (03): : 380 - 389
  • [49] A comprehensive review of machine learning techniques for multi-omics data integration: challenges and applications in precision oncology
    Acharya, Debabrata
    Mukhopadhyay, Anirban
    BRIEFINGS IN FUNCTIONAL GENOMICS, 2024, 23 (05) : 549 - 560
  • [50] Enhancing multimodal deep learning for improved precision and efficiency in medical diagnostics
    Jin, Keyan
    JOURNAL OF THE EUROPEAN ACADEMY OF DERMATOLOGY AND VENEREOLOGY, 2024,