Multimodal deep learning approaches for precision oncology: a comprehensive review

被引:0
|
作者
Yang, Huan [1 ]
Yang, Minglei [2 ]
Chen, Jiani [3 ]
Yao, Guocong [1 ,4 ]
Zou, Quan [1 ,5 ]
Jia, Linpei [6 ]
机构
[1] Univ Elect Sci & Technol China, Yangtze Delta Reg Inst Quzhou, Chengdian Rd, Quzhou 324000, Zhejiang, Peoples R China
[2] Zhengzhou Univ, Affiliated Hosp 1, Dept Pathol, Jianshe Dong Rd, Zhengzhou 450052, Henan, Peoples R China
[3] Xiamen Univ Technol, Sch Optoelect & Commun Engn, Ligong Rd, Xiamen 361024, Fujian, Peoples R China
[4] Henan Univ, Sch Comp & Informat Engn, Jinming Ave, Kaifeng 475001, Henan, Peoples R China
[5] Univ Elect Sci & Technol China, Inst Fundamental & Frontier Sci, Sect 2,North Jianshe Rd, Chengdu 610054, Sichuan, Peoples R China
[6] Capital Med Univ, Xuanwu Hosp, Dept Nephrol, Changchun St, Beijing 100053, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
multimodal; deep learning; cancer; integration; LUNG-CANCER; PREDICTION; CT;
D O I
10.1093/bib/bbae699
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The burgeoning accumulation of large-scale biomedical data in oncology, alongside significant strides in deep learning (DL) technologies, has established multimodal DL (MDL) as a cornerstone of precision oncology. This review provides an overview of MDL applications in this field, based on an extensive literature survey. In total, 651 articles published before September 2024 are included. We first outline publicly available multimodal datasets that support cancer research. Then, we discuss key DL training methods, data representation techniques, and fusion strategies for integrating multimodal data. The review also examines MDL applications in tumor segmentation, detection, diagnosis, prognosis, treatment selection, and therapy response monitoring. Finally, we critically assess the limitations of current approaches and propose directions for future research. By synthesizing current progress and identifying challenges, this review aims to guide future efforts in leveraging MDL to advance precision oncology.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] A comprehensive review on deep learning approaches for short-term load forecasting
    Eren, Yavuz
    Kucukdemiral, Ibrahim
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2024, 189
  • [22] A comprehensive review of gait analysis using deep learning approaches in criminal investigation
    Aung, Sai Thu Ya
    Kusakunniran, Worapan
    PEERJ COMPUTER SCIENCE, 2024, 10
  • [23] Unified Modeling Enhanced Multimodal Learning for Precision Neuro-Oncology
    Yi, Huahui
    Wang, Xiaofei
    Li, Kang
    Li, Chao
    COMPUTATIONAL MATHEMATICS MODELING IN CANCER ANALYSIS, CMMCA 2024, 2025, 15181 : 1 - 10
  • [24] Review of multimodal machine learning approaches in healthcare
    Krones, Felix
    Marikkar, Umar
    Parsons, Guy
    Szmul, Adam
    Mahdi, Adam
    INFORMATION FUSION, 2025, 114
  • [25] Optimizing Neuro-Oncology Imaging: A Review of Deep Learning Approaches for Glioma Imaging
    Shaver, Madeleine M.
    Kohanteb, Paul A.
    Chiou, Catherine
    Bardis, Michelle D.
    Chantaduly, Chanon
    Bota, Daniela
    Filippi, Christopher G.
    Weinberg, Brent
    Grinband, Jack
    Chow, Daniel S.
    Chang, Peter D.
    CANCERS, 2019, 11 (06)
  • [26] Multimodal machine learning in precision health: A scoping review
    Adrienne Kline
    Hanyin Wang
    Yikuan Li
    Saya Dennis
    Meghan Hutch
    Zhenxing Xu
    Fei Wang
    Feixiong Cheng
    Yuan Luo
    npj Digital Medicine, 5
  • [27] Multimodal machine learning in precision health: A scoping review
    Kline, Adrienne
    Wang, Hanyin
    Li, Yikuan
    Dennis, Saya
    Hutch, Meghan
    Xu, Zhenxing
    Wang, Fei
    Cheng, Feixiong
    Luo, Yuan
    NPJ DIGITAL MEDICINE, 2022, 5 (01)
  • [28] Sensor fusion techniques in deep learning for multimodal fruit and vegetable quality assessment: A comprehensive review
    Singh, Raj
    Nisha, R.
    Naik, Ravindra
    Upendar, Konga
    Nickhil, C.
    Deka, Sankar Chandra
    JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION, 2024, 18 (09) : 8088 - 8109
  • [29] A systematic analysis of deep learning in genomics and histopathology for precision oncology
    Unger, Michaela
    Kather, Jakob Nikolas
    BMC MEDICAL GENOMICS, 2024, 17 (01)
  • [30] Is Histopathology Deep Learning Artificial Intelligence the Future of Precision Oncology?
    Wagner, Vincent M.
    JOURNAL OF CLINICAL ONCOLOGY, 2024, 42 (30)