MACHINE LEARNING AND DEEP LEARNING FOR ENHANCED SPATIO-TEMPORAL WAVE PARAMETERS PREDICTION

被引:0
|
作者
Tan, Tian [1 ]
Venugopal, Vengatesan [1 ]
机构
[1] Univ Edinburgh, Sch Engn, Inst Energy Syst, Edinburgh, Scotland
基金
英国工程与自然科学研究理事会;
关键词
Wave prediction; Deep learning; Machine learning; Informer; XGBoost;
D O I
暂无
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
Traditional methods of wave prediction, which are mainly reliant on extensive numerical simulations, such as the utilization of spectral wave models SWAN, WaveWatch III, or TOMAWAC, have prompted the question: Can faster wave prediction be achieved? The answer, as demonstrated by this study, lies in the advancements of machine learning and deep neural networks. In this research, the spatio-temporal relationship between wind and wave conditions is established using the XGBoost machine learning method and Informer deep neural networks. This approach enables effective predictions of wave height and wave period within the waters of the North Atlantic and northern Scotland. Ten years of hourly wind data from ECMWF ERA5 (2012-2021) is used as training data, while field measured wave parameters from CEFAS WaveNet buoys are employed for model training and verification. The final output enable a comparison that ultimately leads to wave predictions for the year 2022. Building upon this foundation, a versatile model for typical weather conditions and a specialized model for extreme weather scenarios are devised, facilitating more precise predictions. The data-driven model, rooted in wind data, proves adept at predicting wave characteristics across different times and locations. Notably, the trained machine learning and deep learning model delivers significant efficiency gains compared to traditional numerical models. One year's worth of data can be predicted within a few seconds by machine learning, whereas over 24 hours (on 16 logical CPUs) are required for the same prediction by TOMAWAC spectra wave model. This leap in training efficiency is a crucial development in the realm of wave prediction.
引用
收藏
页数:9
相关论文
共 50 条
  • [11] Robust Spatio-Temporal Purchase Prediction via Deep Meta Learning
    Qin, Huiling
    Ke, Songyu
    Yang, Xiaodu
    Xu, Haoran
    Zhan, Xianyuan
    Zheng, Yu
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 4312 - 4319
  • [12] A spatio-temporal network for human activity prediction based on deep learning
    Li J.
    Liu H.
    Guo W.
    Chen X.
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2021, 50 (04): : 522 - 531
  • [13] A spatio-temporal network for landslide displacement prediction based on deep learning
    Luo H.
    Jiang Y.
    Xu Q.
    Liao L.
    Yan A.
    Liu C.
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2022, 51 (10): : 2160 - 2170
  • [14] Spatio-temporal Graph Learning for Epidemic Prediction
    Yu, Shuo
    Xia, Feng
    Li, Shihao
    Hou, Mingliang
    Sheng, Quan Z.
    ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2023, 14 (02)
  • [15] Spatio-temporal risk prediction of leptospirosis: A machine-learning-based approach
    Govan, Rodrigue
    Scherrer, Romane
    Fougeron, Baptiste
    Laporte-Magoni, Christine
    Thibeaux, Roman
    Genthon, Pierre
    Fournier-Viger, Philippe
    Goarant, Cyrille
    Selmaoui-Folcher, Nazha
    PLOS NEGLECTED TROPICAL DISEASES, 2025, 19 (01):
  • [16] Spatio-temporal prediction of soil deformation in bucket excavation using machine learning
    Saku, Yuki
    Aizawa, Masanori
    Ooi, Takeshi
    Ishigami, Genya
    ADVANCED ROBOTICS, 2021, 35 (23) : 1404 - 1417
  • [17] Housing price prediction incorporating spatio-temporal dependency into machine learning algorithms
    Soltani, Ali
    Heydari, Mohammad
    Aghaei, Fatemeh
    Pettit, Christopher James
    CITIES, 2022, 131
  • [18] An accurate and efficient deep learning model for spatio-temporal prediction of interfacial flows
    Deng, Yangyu
    Zhang, Di
    Cao, Ze
    Liu, Yakun
    PHYSICS OF FLUIDS, 2024, 36 (04)
  • [19] A novel framework for spatio-temporal prediction of environmental data using deep learning
    Federico Amato
    Fabian Guignard
    Sylvain Robert
    Mikhail Kanevski
    Scientific Reports, 10
  • [20] Enhanced Localization in Ultrafast Ultrasound Imaging through Spatio-Temporal Deep Learning
    Pustovalov, Vassili
    Duong Hung Pham
    Kouame, Denis
    32ND EUROPEAN SIGNAL PROCESSING CONFERENCE, EUSIPCO 2024, 2024, : 780 - 784