Spatio-temporal prediction of soil deformation in bucket excavation using machine learning

被引:3
|
作者
Saku, Yuki [1 ]
Aizawa, Masanori [2 ]
Ooi, Takeshi [2 ]
Ishigami, Genya [1 ]
机构
[1] Keio Univ, Dept Mech Engn, Yokohama, Kanagawa, Japan
[2] Komatsu Ltd, Hiratsuka, Kanagawa, Japan
关键词
Bucket excavation; soil deformation; machine learning; LSTM;
D O I
10.1080/01691864.2021.1943521
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
This paper proposes a prediction model for three-dimensional spatio-temporal soil deformation in bucket excavation. The prediction model for soil deformation (PMSD) consists of two machine learning processes: the long short-term memory (LSTM) and convolutional autoencoder (Conv-AE). These processes use datasets obtained from an experimental apparatus for bucket excavation developed in this work. The apparatus equips multiple depth cameras that precisely capture time-series data of soil deformation in bucket excavation. The LSTM, an extension of a recurrent neural network, successively predicts three-dimensional soil deformation. The Conv-AE is incorporated to both ends of the LSTM in order to quasi-reversibly compress and reconstruct the datasets so that the computational burden of the LSTM is relaxed. Qualitative and quantitative evaluations of the PMSD confirm the feasibility of time-series prediction of three-dimensional soil deformation. The Conv-AE shows sufficient accuracy equivalent to the measurement accuracy of the depth camera. The prediction accuracy of the PMSD is about 10 mm in most of the cases.
引用
收藏
页码:1404 / 1417
页数:14
相关论文
共 50 条
  • [1] Study on spatio-temporal simulation and prediction of regional deep soil moisture using machine learning
    A, Yinglan
    Jiang, Xiaoman
    Wang, Yuntao
    Wang, Libo
    Zhang, Zihao
    Duan, Limin
    Fang, Qingqing
    [J]. JOURNAL OF CONTAMINANT HYDROLOGY, 2023, 258
  • [2] IMPROVING SOIL MOISTURE SPATIO-TEMPORAL RESOLUTION USING MACHINE LEARNING METHOD
    Cui, Yaokui
    Chen, Xi
    Luo, Zengliang
    [J]. IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 4574 - 4577
  • [3] Comparative Presentation of Machine Learning Algorithms in Flood Prediction Using Spatio-Temporal Data
    Jangyodsuk, Piraporn
    Seo, Dong-Jun
    Elmasri, Ramez
    Gao, Jean
    [J]. PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON COMMUNICATIONS, SIGNAL PROCESSING, AND SYSTEMS, 2016, 386 : 1015 - 1023
  • [4] Spatio-Temporal Prediction of the Epidemic Spread of Dangerous Pathogens Using Machine Learning Methods
    Hamer, Wolfgang B.
    Birr, Tim
    Verreet, Joseph-Alexander
    Duttmann, Rainer
    Klink, Holger
    [J]. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2020, 9 (01)
  • [5] STAMP: An Approach to ETA Prediction by Spatio-temporal Discretization and Machine Learning
    Xu, Bo
    Jonietz, David
    Gupta, Rohit
    Soleymani, Ali
    Malm, Kevin
    Kohn, Reinhard
    [J]. 2022 IEEE 25TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2022, : 893 - 900
  • [6] Vision-based measurement of spatio-temporal deformation of excavated soil for the estimation of bucket resistive force
    Tsuchiya, Kenji
    Ishigami, Genya
    [J]. JOURNAL OF TERRAMECHANICS, 2020, 90 : 11 - 21
  • [7] Machine learning of the spatio-temporal characteristics of echocardiographic deformation curves for infarct classification
    Mahdi Tabassian
    Martino Alessandrini
    Lieven Herbots
    Oana Mirea
    Efstathios D. Pagourelias
    Ruta Jasaityte
    Jan Engvall
    Luca De Marchi
    Guido Masetti
    Jan D’hooge
    [J]. The International Journal of Cardiovascular Imaging, 2017, 33 : 1159 - 1167
  • [8] Machine learning of the spatio-temporal characteristics of echocardiographic deformation curves for infarct classification
    Tabassian, Mahdi
    Alessandrini, Martino
    Herbots, Lieven
    Mirea, Oana
    Pagourelias, Efstathios D.
    Jasaityte, Ruta
    Engvall, Jan
    De Marchi, Luca
    Masetti, Guido
    D'hooge, Jan
    [J]. INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING, 2017, 33 (08): : 1159 - 1167
  • [9] Prediction of Landslides Using Machine Learning Techniques Based on Spatio-Temporal Factors and InSAR Data
    Lin, Yan-Ting
    Yen, Hsiao-Ying
    Chang, Nai-Hsuan
    Lin, Hung-Ming
    Han, Jen-Yu
    Yang, Kuo-Hsin
    Chen, Chuin-Shan
    Zheng, Hong-Kui
    Hsu, Jo-Yao
    [J]. Journal of the Chinese Institute of Civil and Hydraulic Engineering, 2021, 33 (02): : 93 - 104
  • [10] Air quality prediction using spatio-temporal deep learning
    Hu, Keyong
    Guo, Xiaolan
    Gong, Xueyao
    Wang, Xupeng
    Liang, Junqing
    Li, Daoquan
    [J]. ATMOSPHERIC POLLUTION RESEARCH, 2022, 13 (10)