mmSkeleton: 3D Human Skeleton Estimation Using Millimeter Wave Radar Sparse Point Clouds

被引:0
|
作者
Li, Wei [1 ]
Lei, Wen [1 ]
Shi, Kun [1 ]
Shi, Zhiguo [1 ]
Wang, Yong [1 ]
Zhou, Jinhai [1 ,2 ]
机构
[1] Zhejiang Univ, Coll Informat Sci & Elect Engn, Hangzhou, Zhejiang, Peoples R China
[2] Key Lab Collaborat Sensing & Autonomous Unmanned, Hangzhou, Zhejiang, Peoples R China
关键词
Human pose estimation; Millimeter-wave radar; Sparse Point clouds; Generalization of actions;
D O I
10.1109/ICCC62479.2024.10681946
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Human body pose estimation based on millimeter-wave radar sparse point clouds is an emerging research field. In this paper, we propose mmSkeleton, a network based on spatio-temporal self-attention mechanism, to extract and integrate information embedded in real point clouds. Additionally, we investigate the generalization issue of the network to different actions and propose a point clouds simulation method based on electromagnetic propagation theory and human electromagnetic scattering characteristics. Experimental results demonstrate that mmSkeleton achieves state-of-the-art (SOTA) performance on our own dataset and two publicly available datasets, and the proposed data augmentation method effectively enhances the model's generalization to different actions.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Deep learning based pose estimation method using 3D point clouds
    Wang, Haowen
    Ai, Shangyou
    Zhuang, Chungang
    Xiong, Zhenhua
    2021 27TH INTERNATIONAL CONFERENCE ON MECHATRONICS AND MACHINE VISION IN PRACTICE (M2VIP), 2021,
  • [42] 3D skeleton transfer for meshes and clouds
    Seylan, Caglar
    Sahillioglu, Yusuf
    GRAPHICAL MODELS, 2019, 105
  • [43] Wave-Shaping Neural Activation for Improved 3D Model Reconstruction from Sparse Point Clouds
    Triantafyllou, Georgios
    Dimas, George
    Kalozoumis, Panagiotis G.
    Iakovidis, Dimitris K.
    ADVANCED CONCEPTS FOR INTELLIGENT VISION SYSTEMS, ACIVS 2023, 2023, 14124 : 172 - 183
  • [44] Fast and Robust 3D Feature Extraction from Sparse Point Clouds
    Serafin, Jacopo
    Olson, Edwin
    Grisetti, Giorgio
    2016 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2016), 2016, : 4105 - 4112
  • [45] SWFormer: Sparse Window Transformer for 3D Object Detection in Point Clouds
    Sun, Pei
    Tan, Mingxing
    Wang, Weiyue
    Liu, Chenxi
    Xia, Fei
    Leng, Zhaoqi
    Anguelov, Dragomir
    COMPUTER VISION, ECCV 2022, PT X, 2022, 13670 : 426 - 442
  • [46] Automated Reconstruction of 3D Open Surfaces from Sparse Point Clouds
    Arshad, Mohammad Samiul
    Beksi, William J.
    2022 IEEE INTERNATIONAL SYMPOSIUM ON MIXED AND AUGMENTED REALITY ADJUNCT (ISMAR-ADJUNCT 2022), 2022, : 216 - 221
  • [47] 3D Siamese Voxel-to-BEV Tracker for Sparse Point Clouds
    Hui, Le
    Wang, Lingpeng
    Cheng, Mingmei
    Xie, Jin
    Yang, Jian
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [48] Trailer angle estimation using radar point clouds
    Olutomilayo, Kunle T.
    Bahramgiri, Mojtaba
    Nooshabadi, Saeid
    Oh, JinHyoung
    Lakehal-Ayat, Mohsen
    Rogan, Douglas
    Fuhrmann, Daniel R.
    SIGNAL PROCESSING, 2021, 188
  • [49] Weakly Supervised Adversarial Learning for 3D Human Pose Estimation from Point Clouds
    Zhang, Zihao
    Hu, Lei
    Deng, Xiaoming
    Xia, Shihong
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2020, 26 (05) : 1851 - 1859
  • [50] Sparse semantic map building and relocalization for UGV using 3D point clouds in outdoor environments
    Yan, Fei
    Wang, Jiawei
    He, Guojian
    Chang, Huan
    Zhuang, Yan
    NEUROCOMPUTING, 2020, 400 : 333 - 342