mmSkeleton: 3D Human Skeleton Estimation Using Millimeter Wave Radar Sparse Point Clouds

被引:0
|
作者
Li, Wei [1 ]
Lei, Wen [1 ]
Shi, Kun [1 ]
Shi, Zhiguo [1 ]
Wang, Yong [1 ]
Zhou, Jinhai [1 ,2 ]
机构
[1] Zhejiang Univ, Coll Informat Sci & Elect Engn, Hangzhou, Zhejiang, Peoples R China
[2] Key Lab Collaborat Sensing & Autonomous Unmanned, Hangzhou, Zhejiang, Peoples R China
关键词
Human pose estimation; Millimeter-wave radar; Sparse Point clouds; Generalization of actions;
D O I
10.1109/ICCC62479.2024.10681946
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Human body pose estimation based on millimeter-wave radar sparse point clouds is an emerging research field. In this paper, we propose mmSkeleton, a network based on spatio-temporal self-attention mechanism, to extract and integrate information embedded in real point clouds. Additionally, we investigate the generalization issue of the network to different actions and propose a point clouds simulation method based on electromagnetic propagation theory and human electromagnetic scattering characteristics. Experimental results demonstrate that mmSkeleton achieves state-of-the-art (SOTA) performance on our own dataset and two publicly available datasets, and the proposed data augmentation method effectively enhances the model's generalization to different actions.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] 3D Crack Skeleton Extraction from Mobile LiDAR Point Clouds
    Yu, Yongtao
    Li, Jonathan
    Guan, Haiyan
    Wang, Cheng
    2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014, : 914 - 917
  • [32] Pix2Point: Learning Outdoor 3D Using Sparse Point Clouds and Optimal Transport
    Leroy, R.
    Trouve-Peloux, P.
    Champagnat, F.
    Le Saux, B.
    Carvalho, M.
    PROCEEDINGS OF 17TH INTERNATIONAL CONFERENCE ON MACHINE VISION APPLICATIONS (MVA 2021), 2021,
  • [33] Dynamic Pose Estimation Based on 3D Point Clouds
    Bo Ouyang
    Yu, Qinghua
    Xiao, Junhao
    Yu, Shuijun
    2015 IEEE INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION, 2015, : 2116 - 2120
  • [34] Robust extrinsic symmetry estimation in 3D point clouds
    Nagar, Rajendra
    VISUAL COMPUTER, 2025, 41 (01): : 115 - 128
  • [35] RADHAR: Human Activity Recognition from Point Clouds Generated through a Millimeter-wave Radar
    Singh, Akash Deep
    Sandha, Sandeep Singh
    Garcia, Luis
    Srivastava, Mani
    PROCEEDINGS OF THE 3RD ACM WORKSHOP ON MILLIMETER-WAVE NETWORKS AND SENSING SYSTEMS, MMNETS 2019, 2019, : 51 - 56
  • [36] 3D imaging system based on FMCW millimeter wave radar
    Korneev, D
    Bogdanov, L
    Nalivkin, A
    Berezin, S
    IRMMW-THZ2005: THE JOINT 30TH INTERNATIONAL CONFERENCE ON INFRARED AND MILLIMETER WAVES AND 13TH INTERNATIONAL CONFERENCE ON TERAHERTZ ELECTRONICS, VOLS 1 AND 2, 2005, : 367 - 368
  • [37] Compressed Sensing for Portable Millimeter Wave 3D Imaging Radar
    Zhang, Renyuan
    Cao, Siyang
    2017 IEEE RADAR CONFERENCE (RADARCONF), 2017, : 663 - 668
  • [38] 3D Imaging Millimeter Wave Circular Synthetic Aperture Radar
    Zhang, Renyuan
    Cao, Siyang
    SENSORS, 2017, 17 (06)
  • [39] Head pose estimation using deep neural networks and 3D point clouds
    Xu, Yuanquan
    Jung, Cheolkon
    Chang, Yakun
    PATTERN RECOGNITION, 2022, 121
  • [40] Improving trajectory estimation using 3D city models and kinematic point clouds
    Lucks, Lukas
    Klingbeil, Lasse
    Pluemer, Lutz
    Dehbi, Youness
    TRANSACTIONS IN GIS, 2021, 25 (01) : 238 - 260