Model-Free Attitude Control of Quadcopter using Disturbance Observer and Integral Reinforcement Learning

被引:0
|
作者
Lee, Hanna [1 ]
Kim, Youdan [1 ,2 ]
机构
[1] Seoul Natl Univ, Dept Aerosp Engn, Seoul 08826, South Korea
[2] Seoul Natl Univ, Dept Aerosp Engn, Inst Adv Aerosp Technol, Seoul 08826, South Korea
来源
基金
新加坡国家研究基金会;
关键词
EXTENDED STATE OBSERVER; NONLINEAR-SYSTEMS; TRACKING; SUBJECT; DESIGN;
D O I
暂无
中图分类号
学科分类号
摘要
A model-free attitude controller is designed for quadcopter systems using extended state observer and integral reinforcement learning. The extended state observer enables controller design even without the complete knowledge of system dynamic model. As a baseline controller, an integral reinforcement learning approach is employed, which is updated with online data along with system trajectories. Numerical simulations demonstrate the effectiveness and robustness of the proposed method for quadcopter attitude control.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Model-Free Adaptive Control Approach Using Integral Reinforcement Learning
    Abouheaf, Mohammed
    Gueaieb, Wail
    2019 IEEE INTERNATIONAL SYMPOSIUM ON ROBOTIC AND SENSORS ENVIRONMENTS (ROSE 2019), 2019, : 84 - 90
  • [2] Simulation-based evaluation of model-free reinforcement learning algorithms for quadcopter attitude control and trajectory tracking
    Yuste, Pablo Caffyn
    Iglesias Martinez, Jose Antonio
    Sanchis de Miguel, Maria Araceli
    NEUROCOMPUTING, 2024, 608
  • [3] Performance-enhanced iterative learning control using a model-free disturbance observer
    Li, Min
    Yan, Tingjian
    Mao, Caohui
    Wen, Long
    Zhang, Xinxin
    Huang, Tao
    IET Control Theory and Applications, 2023, 15 (07): : 978 - 988
  • [4] Performance-enhanced iterative learning control using a model-free disturbance observer
    Li, Min
    Yan, Tingjian
    Mao, Caohui
    Wen, Long
    Zhang, Xinxin
    Huang, Tao
    IET CONTROL THEORY AND APPLICATIONS, 2021, 15 (07): : 978 - 988
  • [5] Model-free Based Reinforcement Learning Control Strategy of Aircraft Attitude Systems
    Huang, Dingcui
    Hu, Jiangping
    Peng, Zhinan
    Chen, Bo
    Hao, Mingrui
    Ghosh, Bijoy Kumar
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 743 - 748
  • [6] Model-free learning control of neutralization processes using reinforcement learning
    Syafiie, S.
    Tadeo, F.
    Martinez, E.
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2007, 20 (06) : 767 - 782
  • [7] Linear Quadratic Control Using Model-Free Reinforcement Learning
    Yaghmaie, Farnaz Adib
    Gustafsson, Fredrik
    Ljung, Lennart
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2023, 68 (02) : 737 - 752
  • [8] Model-Free Quantum Control with Reinforcement Learning
    Sivak, V. V.
    Eickbusch, A.
    Liu, H.
    Royer, B.
    Tsioutsios, I
    Devoret, M. H.
    PHYSICAL REVIEW X, 2022, 12 (01)
  • [9] Model-free Predictive Optimal Iterative Learning Control using Reinforcement Learning
    Zhang, Yueqing
    Chu, Bing
    Shu, Zhan
    2022 AMERICAN CONTROL CONFERENCE, ACC, 2022, : 3279 - 3284
  • [10] Model-free LQ Control for Unmanned Helicopters using Reinforcement Learning
    Lee, Dong Jin
    Bang, Hyochoong
    2011 11TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS), 2011, : 117 - 120