Model-free LQ Control for Unmanned Helicopters using Reinforcement Learning

被引:0
|
作者
Lee, Dong Jin [1 ]
Bang, Hyochoong [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Div Aerosp Engn, Sch Mech Aerosp & Syst Engn, Taejon 305701, South Korea
关键词
Linear Quadratic Regulation; Reinforcement Learning; Unmanned Helicopters;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper concerns with the autonomous flight control system of an unmanned helicopter. We adopt a model-free discrete linear quadratic regulation (LQR) architecture based on reinforcement learning algorithm by rewriting the Q-learning approach. From input and output data, the linear quadratic optimal gain is directly found without system identification procedure. Least square method is adopted in order to estimate the Q-value and the parameters related to optimal control gain. This methodology does not access to an exact model of the system and can be applied to full flight envelop maneuvering from hovering to aggressive flight with small modification. We constructed numerical simulations to evaluate the proposed algorithm with a discrete linear model of the unmanned helicopter.
引用
收藏
页码:117 / 120
页数:4
相关论文
共 50 条
  • [1] Model-free recursive LQ controller design (learning LQ control)
    Kawamura, Y
    Nakano, M
    Yamamoto, H
    [J]. INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2004, 18 (07) : 551 - 570
  • [2] Model-free learning control of neutralization processes using reinforcement learning
    Syafiie, S.
    Tadeo, F.
    Martinez, E.
    [J]. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2007, 20 (06) : 767 - 782
  • [3] Linear Quadratic Control Using Model-Free Reinforcement Learning
    Yaghmaie, Farnaz Adib
    Gustafsson, Fredrik
    Ljung, Lennart
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2023, 68 (02) : 737 - 752
  • [4] Model-Free Quantum Control with Reinforcement Learning
    Sivak, V. V.
    Eickbusch, A.
    Liu, H.
    Royer, B.
    Tsioutsios, I
    Devoret, M. H.
    [J]. PHYSICAL REVIEW X, 2022, 12 (01)
  • [5] Model-free Predictive Optimal Iterative Learning Control using Reinforcement Learning
    Zhang, Yueqing
    Chu, Bing
    Shu, Zhan
    [J]. 2022 AMERICAN CONTROL CONFERENCE, ACC, 2022, : 3279 - 3284
  • [6] Model-Free Adaptive Control Approach Using Integral Reinforcement Learning
    Abouheaf, Mohammed
    Gueaieb, Wail
    [J]. 2019 IEEE INTERNATIONAL SYMPOSIUM ON ROBOTIC AND SENSORS ENVIRONMENTS (ROSE 2019), 2019, : 84 - 90
  • [7] DATA-DRIVEN MODEL-FREE ITERATIVE LEARNING CONTROL USING REINFORCEMENT LEARNING
    Song, Bing
    Phan, Minh Q.
    Longman, Richard W.
    [J]. ASTRODYNAMICS 2018, PTS I-IV, 2019, 167 : 2579 - 2597
  • [8] Model-free MIMO control tuning of a chiller process using reinforcement learning
    Rosdahl, Christian
    Bernhardsson, B. O.
    Eisenhower, Bryan
    [J]. SCIENCE AND TECHNOLOGY FOR THE BUILT ENVIRONMENT, 2023, 29 (08) : 782 - 794
  • [9] Model-free Data-driven Predictive Control Using Reinforcement Learning
    Sawant, Shambhuraj
    Reinhardt, Dirk
    Kordabad, Arash Bahari
    Gros, Sebastien
    [J]. 2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC, 2023, : 4046 - 4052
  • [10] Control of a Wave Energy Converter Using Model-free Deep Reinforcement Learning
    Chen, Kemeng
    Huang, Xuanrui
    Lin, Zechuan
    Xiao, Xi
    [J]. 2024 UKACC 14TH INTERNATIONAL CONFERENCE ON CONTROL, CONTROL, 2024, : 1 - 6