Model-Free Attitude Control of Quadcopter using Disturbance Observer and Integral Reinforcement Learning

被引:0
|
作者
Lee, Hanna [1 ]
Kim, Youdan [1 ,2 ]
机构
[1] Seoul Natl Univ, Dept Aerosp Engn, Seoul 08826, South Korea
[2] Seoul Natl Univ, Dept Aerosp Engn, Inst Adv Aerosp Technol, Seoul 08826, South Korea
来源
基金
新加坡国家研究基金会;
关键词
EXTENDED STATE OBSERVER; NONLINEAR-SYSTEMS; TRACKING; SUBJECT; DESIGN;
D O I
暂无
中图分类号
学科分类号
摘要
A model-free attitude controller is designed for quadcopter systems using extended state observer and integral reinforcement learning. The extended state observer enables controller design even without the complete knowledge of system dynamic model. As a baseline controller, an integral reinforcement learning approach is employed, which is updated with online data along with system trajectories. Numerical simulations demonstrate the effectiveness and robustness of the proposed method for quadcopter attitude control.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Model-Free Control for Distributed Stream Data Processing using Deep Reinforcement Learning
    Li, Teng
    Xu, Zhiyuan
    Tang, Jian
    Wang, Yanzhi
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2018, 11 (06): : 705 - 718
  • [32] Model-free Control Design Using Policy Gradient Reinforcement Learning in LPV Framework
    Bao, Yajie
    Velni, Javad Mohammadpour
    2021 EUROPEAN CONTROL CONFERENCE (ECC), 2021, : 150 - 155
  • [33] Control of neural systems at multiple scales using model-free, deep reinforcement learning
    Mitchell, B. A.
    Petzold, L. R.
    SCIENTIFIC REPORTS, 2018, 8
  • [34] Model-Free Control for Dynamic-Field Acoustic Manipulation Using Reinforcement Learning
    Latifi, Kourosh
    Kopitca, Artur
    Zhou, Quan
    IEEE ACCESS, 2020, 8 : 20597 - 20606
  • [35] Control of neural systems at multiple scales using model-free, deep reinforcement learning
    B. A. Mitchell
    L. R. Petzold
    Scientific Reports, 8
  • [36] Using Reinforcement Learning for Model-free Linear Quadratic Control with Process and Measurement Noises
    Yaghmaie, Farnaz Adib
    Gustafsson, Fredrik
    2019 IEEE 58TH CONFERENCE ON DECISION AND CONTROL (CDC), 2019, : 6510 - 6517
  • [37] Model-free predictive current control based on improved sliding mode disturbance observer
    Wei, Qingkun
    Tan, Cao
    Hao, Mingji
    Chen, Xuewei
    Li, Yingrui
    Ge, Wenqing
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2024, 46 (13) : 2593 - 2602
  • [38] Model-Free Distributed Reinforcement Learning State Estimation of a Dynamical System Using Integral Value Functions
    Salamat, Babak
    Elsbacher, Gerhard
    Tonello, Andrea M.
    Belzner, Lenz
    IEEE OPEN JOURNAL OF CONTROL SYSTEMS, 2023, 2 : 70 - 78
  • [39] Model-free adaptive discrete-time integral terminal sliding mode control for PMSM drive system with disturbance observer
    Zhao, Yang
    Liu, Xudong
    Yu, Haisheng
    Yu, Jinpeng
    IET ELECTRIC POWER APPLICATIONS, 2020, 14 (10) : 1756 - 1765
  • [40] Model-Free Predictive Control Based on the Integral Sliding Mode Observer for Induction Motor
    Mousavi, Mahdi S.
    Davari, S. Alireza
    Nekoukar, Vahab
    Garcia, Cristian
    Rodriguez, Jose
    2022 13TH POWER ELECTRONICS, DRIVE SYSTEMS, AND TECHNOLOGIES CONFERENCE (PEDSTC), 2022, : 113 - 117