3D-Printable Polymer Filters for the Selective Complexation of Silver Ions

被引:0
|
作者
Koswig, Timo [1 ,2 ]
Meurer, Josefine [1 ,2 ]
Baetz, Thomas [1 ,2 ]
Mueschke, Oswald [1 ,2 ]
Zechel, Stefan [1 ,2 ]
Hager, Martin D. [1 ,2 ,3 ]
Schubert, Ulrich S. [1 ,2 ,3 ]
机构
[1] Friedrich Schiller Univ Jena, Lab Organ & Macromol Chem IOMC, Jena, Germany
[2] Friedrich Schiller Univ Jena, Jena Ctr Soft Matter JCSM, Jena, Germany
[3] Helmholtz Inst Polymers Energy Applicat Jena HIPOL, Jena, Germany
关键词
BENZOTHIACROWN ETHER; 3D; EXTRACTION; GOLD;
D O I
10.1002/app.56530
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
This study presents the fabrication of polymeric filters, which are able to selectively bind silver ions from aqueous solution. Those filters are fabricated within an easy approach via 3D-digital light processing (DLP)-printing enabling a tailor-made design. In first order, an acrylamide containing a benzo-trithiacrown-ether (BTCE) functionality is synthesized. This monomer is further 3D-printed via layer by layer photo-polymerization together with commercially available comonomers, resulting in polymer networks containing the BTCE-groups in their side chains as selective binding moiety for silver ions. Within isothermal-titration calorimetry (ITC) measurements, the complexation abilities of the BTCE to bind the Ag+ ions are determined. Furthermore, the resulting 3D-printed filters are investigated regarding their complexation behavior, in a detailed fashion applying inductively coupled plasma optical emission spectroscopy (ICP-OES).
引用
收藏
页数:9
相关论文
共 50 条
  • [31] 3D-Printable Sustainable Bioplastics from Gluten and Keratin
    Alshehhi, Jumana Rashid Mohammed Haroub
    Wanasingha, Nisal
    Balu, Rajkamal
    Mata, Jitendra
    Shah, Kalpit
    Dutta, Naba K.
    Choudhury, Namita Roy
    GELS, 2024, 10 (02)
  • [32] Open-Source 3D-Printable Optics Equipment
    Zhang, Chenlong
    Anzalone, Nicholas C.
    Faria, Rodrigo P.
    Pearce, Joshua M.
    PLOS ONE, 2013, 8 (03):
  • [33] Progress on a Novel, 3D-Printable Heart Valve Prosthesis
    Schroeter, Filip
    Kuehnel, Ralf-Uwe
    Hartrumpf, Martin
    Ostovar, Roya
    Albes, Johannes Maximilian
    POLYMERS, 2023, 15 (22)
  • [34] 3D-Printable Concrete for Energy-Efficient Buildings
    Samudrala, Manideep
    Mujeeb, Syed
    Lanjewar, Bhagyashri A. A.
    Chippagiri, Ravijanya
    Kamath, Muralidhar
    Ralegaonkar, Rahul V. V.
    ENERGIES, 2023, 16 (10)
  • [35] Design Method of 3D-Printable Ergonomically Personalized Stabilizer
    Kawamura, Ryota
    Takazawa, Kazuki
    Yamamoto, Kenta
    Ochiai, Yoichi
    DIGITAL HUMAN MODELING AND APPLICATIONS IN HEALTH, SAFETY, ERGONOMICS AND RISK MANAGEMENT. HUMAN BODY AND MOTION, DHM 2019, PT I, 2019, 11581 : 71 - 87
  • [36] Thermoplastic electroactive gels for 3D-printable artificial muscles
    Helps, Tim
    Taghavi, Majid
    Rossiter, Jonathan
    SMART MATERIALS AND STRUCTURES, 2019, 28 (08)
  • [37] A Light-Mediated, 3D-Printable, and Self-Healable Polymer Electrolyte for Lithium Batteries
    Elizalde, Fermin
    Trano, Sabrina
    Ayestaran, Jon
    de Pariza, Xabier Lopez
    Aguirresarobe, Robert
    Francia, Carlotta
    Mecerreyes, David
    Sardon, Haritz
    Bella, Federico
    ADVANCED FUNCTIONAL MATERIALS, 2025, 35 (08)
  • [38] A Study of 3D-Printable Reinforced Composite Resin: PMMA Modified with Silver Nanoparticles Loaded Cellulose Nanocrystal
    Chen, Shenggui
    Yang, Junzhong
    Jia, Yong-Guang
    Lu, Bingheng
    Ren, Li
    MATERIALS, 2018, 11 (12)
  • [39] A 3D-Printable Robotic Gripper Based on Thick Panel Origami
    Liu, Chenying
    Maiolino, Perla
    You, Zhong
    FRONTIERS IN ROBOTICS AND AI, 2021, 8
  • [40] Covalent heparin immobilization on new developed 3D-printable biomaterials
    Novosel, Esther
    Meyer, Wolfdietrich
    Wegener, Michael
    Krueger, Hartmut
    Borchers, Kirsten
    Kluger, Petra
    Tovar, Guenter
    Walles, Heike
    Hirth, Thomas
    TISSUE ENGINEERING PART A, 2011, 17 (3-4) : 568 - 568