Surface heterostructuring of 316L stainless steel manufactured by laser powder bed fusion and hot isostatic pressing

被引:3
|
作者
Kim, Rae Eon [1 ]
Jeong, Sang Guk [2 ]
Ha, Hyojeong [2 ]
Heo, Yoon-Uk [1 ]
Amanov, Auezhan [3 ,4 ]
Gu, Gang Hee [2 ]
Lee, Dong Jun [5 ]
Moon, Jongun [6 ]
Kim, Hyoung Seop [1 ,2 ,7 ,8 ,9 ]
机构
[1] Pohang Univ Sci & Technol POSTECH, Grad Inst Ferrous & Energy Mat Technol, Pohang 37673, South Korea
[2] Pohang Univ Sci & Technol POSTECH, Dept Mat Sci & Engn, Pohang 37673, South Korea
[3] Sun Moon Univ, Dept Mech Engn, Asan 31460, South Korea
[4] Tampere Univ, Fac Engn & Nat Sci, Tampere 33720, Finland
[5] Korea Inst Mat Sci, Aerosp Mat Ctr, 797 Changwondaero, Chang Won 51508, Gyeongnam, South Korea
[6] Kongju Natl Univ, Ctr Adv Powder Mat & Parts, Div Adv Mat Engn, Cheonan 32588, Chungnam, South Korea
[7] Pohang Univ Sci & Technol POSTECH, Ctr Heterogenic Met Addit Mfg, Pohang 37673, South Korea
[8] Tohoku Univ, Adv Inst Mat Res WPI AIMR, Sendai 9808577, Japan
[9] Yonsei Univ, Inst Convergence Res & Educ Adv Technol, Seoul 03722, South Korea
基金
新加坡国家研究基金会;
关键词
Laser powder bed fusion; Gradient structure; Heterogeneous materials; Ultrasonic nanocrystal surface modification; Hot isostatic pressure; STACKING-FAULT ENERGY; MECHANICAL-PROPERTIES; BACK STRESS; GRAIN-SIZE; MICROSTRUCTURE; DEFORMATION; BEHAVIOR; STRAIN; STRENGTH; RESISTANCE;
D O I
10.1016/j.msea.2024.146820
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Metal additive manufacturing (AM), offering high freedom of design, has garnered attention as a cutting-edge manufacturing technology. Commonly, hot isostatic pressing (HIP), as post-processing, is utilized to remove undesirable defects in AM parts to obtain fully dense components. However, excessive heating during HIP can result in the deterioration of mechanical properties, limiting their potential for structural industry applications. Herein, we propose a new strategy to obtain an optimized gradient structure to achieve a substantial synergistic effect through ultrasonic nanocrystal surface modification (UNSM) on the HIP-processed AM substrate. The resulting microstructure shows an extended gradient layer reaching the center of the substrate with significant mechanical incompatibility between adjacent domains, showing an excellent combination of strength and ductility. Our study suggests that the optimized gradient structure with superior mechanical properties can be achieved by strategically exploiting HIP-induced effects, which are generally avoided in structural materials due to their deleterious effect on strength.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Corrosion behavior of 316L stainless steel manufactured by laser powder bed fusion (L-PBF) in an alkaline solution
    Shaeri Karimi, M.H.
    Yeganeh, M.
    Alavi Zaree, S.R.
    Eskandari, M.
    Optics and Laser Technology, 2021, 138
  • [42] Corrosion behavior of 316L stainless steel manufactured by laser powder bed fusion (L-PBF) in an alkaline solution
    Karimi, M. H. Shaeri
    Yeganeh, M.
    Zaree, S. R. Alavi
    Eskandari, M.
    OPTICS AND LASER TECHNOLOGY, 2021, 138
  • [43] The Effect of Severe Shot Peening on Fatigue Life of Laser Powder Bed Fusion Manufactured 316L Stainless Steel
    Rautio, Timo
    Jaskari, Matias
    Gundgire, Tejas
    Iso-Junno, Terho
    Vippola, Minnamari
    Jarvenpaa, Antti
    MATERIALS, 2022, 15 (10)
  • [44] Effect of post-treatments on the fatigue behaviour of 316L stainless steel manufactured by laser powder bed fusion
    Elangeswaran, Chola
    Cutolo, Antonio
    Muralidharan, Gokula Krishna
    de Formanoir, Charlotte
    Berto, Filippo
    Vanmeensel, Kim
    Van Hooreweder, Brecht
    INTERNATIONAL JOURNAL OF FATIGUE, 2019, 123 : 31 - 39
  • [45] Multi-scale characterisation of microstructure and texture of 316L stainless steel manufactured by laser powder bed fusion
    Moyle, Maxwell
    Ledermueller, Carina
    Zou, Zheren
    Primig, Sophie
    Haghdadi, Nima
    MATERIALS CHARACTERIZATION, 2022, 184
  • [46] Enhancement and underlying fatigue mechanisms of laser powder bed fusion additive-manufactured 316L stainless steel
    Hamada, Atef
    Jaskari, Matias
    Gundgire, Tejas
    Jarvenpaa, Antti
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2023, 873
  • [47] Influence of processing parameters on the density of 316L stainless steel parts manufactured through laser powder bed fusion
    Pragana, Joao P. M.
    Pombinha, Pedro
    Duarte, Valdemar R.
    Rodrigues, Tiago A.
    Oliveira, Joao P.
    Braganca, Ivo M. F.
    Santos, Telmo G.
    Miranda, Rosa M.
    Coutinho, Luisa
    Silva, Carlos M. A.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART B-JOURNAL OF ENGINEERING MANUFACTURE, 2020, 234 (09) : 1246 - 1257
  • [48] Microstructure and mechanical properties of stainless steel 316L vertical struts manufactured by laser powder bed fusion process
    Wang, Xianglong
    Muniz-Lerma, Jose Alberto
    Sanchez-Mata, Oscar
    Shandiz, Mohammad Attarian
    Brochu, Mathieu
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2018, 736 : 27 - 40
  • [49] Controlling the porosity of 316L stainless steel parts manufactured via the powder bed fusion process
    AlFaify, Abdullah
    Hughes, James
    Ridgway, Keith
    RAPID PROTOTYPING JOURNAL, 2019, 25 (01) : 162 - 175
  • [50] Laser Powder Bed Fusion of 316L Stainless Steel: Effect of Laser Polishing on the Surface Morphology and Corrosion Behavior
    Liu, Jun
    Ma, Haojun
    Meng, Lingjian
    Yang, Huan
    Yang, Can
    Ruan, Shuangchen
    Ouyang, Deqin
    Mei, Shuwen
    Deng, Leimin
    Chen, Jie
    Cao, Yu
    MICROMACHINES, 2023, 14 (04)