Surface heterostructuring of 316L stainless steel manufactured by laser powder bed fusion and hot isostatic pressing

被引:3
|
作者
Kim, Rae Eon [1 ]
Jeong, Sang Guk [2 ]
Ha, Hyojeong [2 ]
Heo, Yoon-Uk [1 ]
Amanov, Auezhan [3 ,4 ]
Gu, Gang Hee [2 ]
Lee, Dong Jun [5 ]
Moon, Jongun [6 ]
Kim, Hyoung Seop [1 ,2 ,7 ,8 ,9 ]
机构
[1] Pohang Univ Sci & Technol POSTECH, Grad Inst Ferrous & Energy Mat Technol, Pohang 37673, South Korea
[2] Pohang Univ Sci & Technol POSTECH, Dept Mat Sci & Engn, Pohang 37673, South Korea
[3] Sun Moon Univ, Dept Mech Engn, Asan 31460, South Korea
[4] Tampere Univ, Fac Engn & Nat Sci, Tampere 33720, Finland
[5] Korea Inst Mat Sci, Aerosp Mat Ctr, 797 Changwondaero, Chang Won 51508, Gyeongnam, South Korea
[6] Kongju Natl Univ, Ctr Adv Powder Mat & Parts, Div Adv Mat Engn, Cheonan 32588, Chungnam, South Korea
[7] Pohang Univ Sci & Technol POSTECH, Ctr Heterogenic Met Addit Mfg, Pohang 37673, South Korea
[8] Tohoku Univ, Adv Inst Mat Res WPI AIMR, Sendai 9808577, Japan
[9] Yonsei Univ, Inst Convergence Res & Educ Adv Technol, Seoul 03722, South Korea
基金
新加坡国家研究基金会;
关键词
Laser powder bed fusion; Gradient structure; Heterogeneous materials; Ultrasonic nanocrystal surface modification; Hot isostatic pressure; STACKING-FAULT ENERGY; MECHANICAL-PROPERTIES; BACK STRESS; GRAIN-SIZE; MICROSTRUCTURE; DEFORMATION; BEHAVIOR; STRAIN; STRENGTH; RESISTANCE;
D O I
10.1016/j.msea.2024.146820
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Metal additive manufacturing (AM), offering high freedom of design, has garnered attention as a cutting-edge manufacturing technology. Commonly, hot isostatic pressing (HIP), as post-processing, is utilized to remove undesirable defects in AM parts to obtain fully dense components. However, excessive heating during HIP can result in the deterioration of mechanical properties, limiting their potential for structural industry applications. Herein, we propose a new strategy to obtain an optimized gradient structure to achieve a substantial synergistic effect through ultrasonic nanocrystal surface modification (UNSM) on the HIP-processed AM substrate. The resulting microstructure shows an extended gradient layer reaching the center of the substrate with significant mechanical incompatibility between adjacent domains, showing an excellent combination of strength and ductility. Our study suggests that the optimized gradient structure with superior mechanical properties can be achieved by strategically exploiting HIP-induced effects, which are generally avoided in structural materials due to their deleterious effect on strength.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Development of crystallographic misorientation in laser powder bed fusion 316L stainless steel
    Biswas, Prosenjit
    Ma, Ji
    ADDITIVE MANUFACTURING, 2024, 80
  • [32] Ultrasonic nondestructive evaluation of laser powder bed fusion 316L stainless steel
    Kim, Changgong
    Yin, Houshang
    Shmatok, Andrii
    Prorok, Barton C.
    Lou, Xiaoyuan
    Matlack, Kathryn H.
    ADDITIVE MANUFACTURING, 2021, 38
  • [33] Porosity control in 316L stainless steel using cold and hot isostatic pressing
    Essa, Khamis
    Jamshidi, Parastoo
    Zou, Ji
    Attallah, Moataz M.
    Hassanin, Hany
    MATERIALS & DESIGN, 2018, 138 : 21 - 29
  • [34] Fuzzy process optimization of laser powder bed fusion of 316L stainless steel
    Ponticelli, Gennaro Salvatore
    Venettacci, Simone
    Giannini, Oliviero
    Guarino, Stefano
    Horn, Matthias
    PROGRESS IN ADDITIVE MANUFACTURING, 2023, 8 (03) : 437 - 458
  • [35] Fuzzy process optimization of laser powder bed fusion of 316L stainless steel
    Gennaro Salvatore Ponticelli
    Simone Venettacci
    Oliviero Giannini
    Stefano Guarino
    Matthias Horn
    Progress in Additive Manufacturing, 2023, 8 : 437 - 458
  • [36] Stability of cellular microstructure in laser powder bed fusion of 316L stainless steel
    Bertoli, Umberto Scipioni
    MacDonald, Benjamin E.
    Schoenung, Julie M.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2019, 739 : 109 - 117
  • [37] Influence of the surface state on the corrosion behavior of the 316 L stainless steel manufactured by laser powder bed fusion
    Bedmar, J.
    Abu-warda, N.
    Garcia-Rodriguez, S.
    Torres, B.
    Rams, J.
    CORROSION SCIENCE, 2022, 207
  • [38] Effect of Thermal Treatment on Corrosion Behavior of AISI 316L Stainless Steel Manufactured by Laser Powder Bed Fusion
    Andreatta, Francesco
    Lanzutti, Alex
    Revilla, Reynier, I
    Vaglio, Emanuele
    Totis, Giovanni
    Sortino, Marco
    de Graeve, Iris
    Fedrizzi, Lorenzo
    MATERIALS, 2022, 15 (19)
  • [39] Investigation of Material Properties of Wall Structures from Stainless Steel 316L Manufactured by Laser Powder Bed Fusion
    Hoang Minh Vu
    Meiniger, Steffen
    Ringel, Bjoern
    Hoche, Holger Claus
    Oechsner, Matthias
    Weigold, Matthias
    Schmitt, Matthias
    Schlick, Georg
    METALS, 2022, 12 (02)
  • [40] Influence of the surface state on the corrosion behavior of the 316 L stainless steel manufactured by laser powder bed fusion
    Bedmar, J.
    Abu-warda, N.
    García-Rodríguez, S.
    Torres, B.
    Rams, J.
    Corrosion Science, 2022, 207