Self-dual projective toric varieties and their ideals

被引:0
|
作者
Thoma, Apostolos [1 ]
Vladoiu, Marius [2 ,3 ]
机构
[1] Univ Ioannina, Dept Math, Ioannina 45110, Greece
[2] Univ Bucharest, Fac Math & Comp Sci, Str Acad 14, Bucharest 010014, Romania
[3] Romanian Acad, Sim Stoilow Inst Math, Str Grivita 21, Bucharest 014700, Romania
关键词
Toric varieties; Self dual; Gale transforms; Markov basis; Graver basis; Gr & ouml; bner basis; MARKOV BASES; ALGEBRA;
D O I
10.1007/s13348-024-00459-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We describe explicitly all multisets of weights whose defining projective toric varieties are self-dual. In addition, we describe a remarkable and unexpected combinatorial behaviour of the defining ideals of these varieties. The toric ideal of a self-dual projective variety is weakly robust, that means the Graver basis is the union of all minimal binomial generating sets. When, in addition, the self-dual projective variety is defined by a non-pyramidal configuration, then the toric ideal is strongly robust, namely the Graver basis is a minimal generating set, therefore there is only one minimal binomial generating set which is also a reduced Gr & ouml;bner basis with respect to every monomial order and thus, equals the universal Gr & ouml;bner basis.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Self-dual sets of type (m, n) in projective spaces
    Ferri O.
    Ferri S.
    Zannetti M.
    Journal of Geometry, 2004, 79 (1-2) : 59 - 66
  • [32] Quasi-projective reduction of toric varieties
    A. A'Campo–Neuen
    J. Hausen
    Mathematische Zeitschrift, 2000, 233 : 697 - 708
  • [33] Segre classes on smooth projective toric varieties
    Moe, Torgunn Karoline
    Qviller, Nikolay
    MATHEMATISCHE ZEITSCHRIFT, 2013, 275 (1-2) : 529 - 548
  • [34] A new construction of self-dual codes from projective planes
    Dougherty, Steven T.
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2005, 31 : 337 - 348
  • [35] Several diophantian aspects of projective toric varieties
    Philippon, Patrice
    Sombra, Martin
    DIOPHANTINE APPROXIMATION: FESTSCHRIFT FOR WOLFGANG SCHMIDT, 2008, 16 : 295 - +
  • [36] SIMPLICIAL WEDGE COMPLEXES AND PROJECTIVE TORIC VARIETIES
    Kim, Jin Hong
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2017, 54 (01) : 265 - 276
  • [37] Toric varieties as spectra of homogeneous prime ideals
    Markus Perling
    Geometriae Dedicata, 2007, 127 : 121 - 129
  • [38] CONFORMAL IMBEDDINGS OF THE COMPLEX PROJECTIVE PLANE AND SELF-DUAL CONNECTIONS
    KARSTOFT, H
    MATHEMATICA SCANDINAVICA, 1992, 70 (02) : 207 - 226
  • [39] RATIONAL INTERSECTION COHOMOLOGY OF PROJECTIVE TORIC VARIETIES
    FIESELER, KH
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1991, 413 : 88 - 98
  • [40] Quasi-projective reduction of toric varieties
    A'Campo-Neuen, A
    Hausen, J
    MATHEMATISCHE ZEITSCHRIFT, 2000, 233 (04) : 697 - 708