Magic running- and standing-wave optical traps for Rydberg atoms

被引:0
|
作者
Ahlheit, Lukas [1 ]
Nill, Chris [1 ,2 ,3 ]
Svirskiy, Daniil [1 ]
de Haan, Jan [1 ]
Schroers, Simon [1 ]
Alt, Wolfgang [1 ]
Stiesdal, Nina [1 ]
Lesanovsky, Igor [2 ,3 ,4 ,5 ]
Hofferberth, Sebastian [1 ]
机构
[1] Univ Bonn, Inst Angew Phys, Wegelerstr 8, D-53115 Bonn, Germany
[2] Univ Tubingen, Inst Theoret Phys, Morgenstelle 14, D-72076 Tubingen, Germany
[3] Univ Tubingen, Ctr Integrated Quantum Sci & Technol, Morgenstelle 14, D-72076 Tubingen, Germany
[4] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England
[5] Univ Nottingham, Ctr Math & Theoret Phys Quantum Nonequilibrium Sys, Nottingham NG7 2RD, England
基金
欧洲研究理事会;
关键词
NONLINEAR OPTICS; QUANTUM MEMORY; LIGHT; PHOTONS; STORAGE;
D O I
10.1103/PhysRevA.111.013115
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Magic trapping of ground and Rydberg states, which equalizes the AC Stark shifts of these two levels, enables increased ground-to-Rydberg state coherence times. We measure via photon storage and retrieval how the ground-to-Rydberg state coherence depends on trap wavelength for two different traps and find different optimal wavelengths for a one-dimensional optical lattice trap and a running wave optical dipole trap. Comparison to theory reveals that this is caused by the Rydberg electron sampling different potential landscapes. The observed difference increases for higher principal quantum numbers, where the extent of the Rydberg electron wave function becomes larger than the optical lattice period. Our analysis shows that optimal magic trapping conditions depend on the trap geometry, in particular for optical lattices and tweezers.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Ionization of Rydberg atoms by standing-wave light fields
    Anderson, Sarah E.
    Raithel, Georg
    NATURE COMMUNICATIONS, 2013, 4
  • [2] Ionization of Rydberg atoms by standing-wave light fields
    Sarah E. Anderson
    Georg Raithel
    Nature Communications, 4
  • [3] Magic-wavelength optical traps for Rydberg atoms
    Zhang, S.
    Robicheaux, F.
    Saffman, M.
    PHYSICAL REVIEW A, 2011, 84 (04):
  • [4] DEFLECTION OF ATOMS BY STANDING-WAVE RADIATION
    MOSKOWITZ, PE
    GOULD, PL
    PRITCHARD, DE
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1985, 2 (11) : 1784 - 1790
  • [5] OPTICAL BISTABILITY FOR 2-LEVEL ATOMS IN A STANDING-WAVE CAVITY
    GRANT, DE
    KIMBLE, HJ
    OPTICS LETTERS, 1982, 7 (08) : 353 - 355
  • [6] Normal mode line shapes for atoms in standing-wave optical resonators
    Childs, JJ
    An, K
    Otteson, MS
    Dasari, RR
    Feld, MS
    PHYSICAL REVIEW LETTERS, 1996, 77 (14) : 2901 - 2904
  • [7] Addressing individual atoms in optical lattices with standing-wave driving fields
    Cho, Jaeyoon
    PHYSICAL REVIEW LETTERS, 2007, 99 (02)
  • [8] Adiabatic following in standing-wave diffraction of atoms
    Keller, C
    Schmiedmayer, J
    Zeilinger, A
    Nonn, T
    Dürr, S
    Rempe, G
    APPLIED PHYSICS B-LASERS AND OPTICS, 1999, 69 (04): : 303 - 309
  • [9] FORCES ON ATOMS IN A STANDING-WAVE LASER FIELD
    FIORDILINO, E
    MITTLEMAN, MH
    PHYSICAL REVIEW A, 1984, 30 (01): : 177 - 182
  • [10] Adiabatic following in standing-wave diffraction of atoms
    C. Keller
    J. Schmiedmayer
    A. Zeilinger
    T. Nonn
    S. Dürr
    G. Rempe
    Applied Physics B, 1999, 69 : 303 - 309