Linear Canonical Bargmann Transform

被引:0
|
作者
Linghu, Rong-Qian [1 ]
Li, Bing-Zhao [1 ,2 ]
机构
[1] Beijing Inst Technol, Sch Math & Stat, Beijing 102488, Peoples R China
[2] Beijing Inst Technol, Beijing Key Lab MCAACI, Beijing 102488, Peoples R China
基金
中国国家自然科学基金;
关键词
Linear canonical Bargmann transform; Bargmann transform; Convolution; Uncertainty principle; INTEGRAL TRANSFORM; ANALYTIC-FUNCTIONS; HILBERT-SPACE; FOURIER;
D O I
10.1007/s11785-024-01628-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a linear canonical transform associated with the Bargmann transform, referred to as the linear canonical Bargmann transform (LCBT) is proposed. The relationship between the Fourier transform, fractional Fourier transform, and the LCBT are discussed. Following this, the basic properties of the LCBT are derived, including the Parseval theorem, linearity, translation, modulation, convolution, and the uncertainty principle. It is evident that the LCBT serves as a generalized form of both the Fourier transform and fractional Fourier transform.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Random discrete linear canonical transform
    Wei, Deyun
    Wang, Ruikui
    Li, Yuan-Min
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2016, 33 (12) : 2470 - 2476
  • [32] Sliding Discrete Linear Canonical Transform
    Sun, Yan-Nan
    Li, Bing-Zhao
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2018, 66 (17) : 4553 - 4563
  • [33] Discrete quaternion linear canonical transform
    Urynbassarova, Didar
    Teali, Aajaz A.
    Zhang, Feng
    DIGITAL SIGNAL PROCESSING, 2022, 122
  • [34] Sampling and discretization of the linear canonical transform
    Healy, John J.
    Sheridan, John T.
    SIGNAL PROCESSING, 2009, 89 (04) : 641 - 648
  • [35] Segmented fast linear canonical transform
    Sun, Yan-Nan
    Li, Bing-Zhao
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2018, 35 (08) : 1346 - 1355
  • [36] Multidimensional linear canonical transform and convolution
    Kundu, Manab
    Prasad, Akhilesh
    Verma, Randhir Kumar
    JOURNAL OF THE RAMANUJAN MATHEMATICAL SOCIETY, 2022, 37 (02) : 159 - 171
  • [37] Uncertainty inequalities for linear canonical transform
    Xu, Guanlei
    Wang, Xiaotong
    Xu, Xiaogang
    IET SIGNAL PROCESSING, 2009, 3 (05) : 392 - 402
  • [38] Frames in linear canonical transform domain
    Li, Bing-Zhao
    Tao, Ran
    Wang, Yue
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2007, 35 (07): : 1387 - 1390
  • [39] The Spectrogram Associated with the Linear Canonical Transform
    Zhao Zhi-Chun
    Li Bing-Zhao
    PROCEEDINGS 2013 INTERNATIONAL CONFERENCE ON MECHATRONIC SCIENCES, ELECTRIC ENGINEERING AND COMPUTER (MEC), 2013, : 1242 - 1245
  • [40] LINEAR CANONICAL HILBERT TRANSFORM AND PROPERTIES
    Bahri, Mawardi
    Amir, Amir Kamal
    Ashino, Ryuichi
    PROCEEDINGS OF 2019 INTERNATIONAL CONFERENCE ON WAVELET ANALYSIS AND PATTERN RECOGNITION (ICWAPR), 2019, : 104 - 109