Linear Canonical Bargmann Transform

被引:0
|
作者
Linghu, Rong-Qian [1 ]
Li, Bing-Zhao [1 ,2 ]
机构
[1] Beijing Inst Technol, Sch Math & Stat, Beijing 102488, Peoples R China
[2] Beijing Inst Technol, Beijing Key Lab MCAACI, Beijing 102488, Peoples R China
基金
中国国家自然科学基金;
关键词
Linear canonical Bargmann transform; Bargmann transform; Convolution; Uncertainty principle; INTEGRAL TRANSFORM; ANALYTIC-FUNCTIONS; HILBERT-SPACE; FOURIER;
D O I
10.1007/s11785-024-01628-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a linear canonical transform associated with the Bargmann transform, referred to as the linear canonical Bargmann transform (LCBT) is proposed. The relationship between the Fourier transform, fractional Fourier transform, and the LCBT are discussed. Following this, the basic properties of the LCBT are derived, including the Parseval theorem, linearity, translation, modulation, convolution, and the uncertainty principle. It is evident that the LCBT serves as a generalized form of both the Fourier transform and fractional Fourier transform.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Octonion Offset Linear Canonical Transform
    Bhat, Younis Ahmad
    Sheikh, N. A.
    ANALYSIS AND MATHEMATICAL PHYSICS, 2022, 12 (04)
  • [22] Sampling in the Linear Canonical Transform Domain
    Li, Bing-Zhao
    Xu, Tian-Zhou
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2012, 2012
  • [23] Linear canonical wave packet transform
    Prasad, Akhilesh
    Kundu, Manab
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2021, 32 (11) : 893 - 911
  • [24] Octonion Offset Linear Canonical Transform
    Younis Ahmad Bhat
    N. A. Sheikh
    Analysis and Mathematical Physics, 2022, 12
  • [25] Discrete linear canonical shearlet transform
    Bhat, Younis A.
    Sheikh, N. A.
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2024, 22 (04)
  • [26] Linear canonical transform and its implication
    Deng, Bing
    Tao, Ran
    Binggong Xuebao/Acta Armamentarii, 2006, 27 (04): : 665 - 670
  • [27] Uncertainty Principles for Linear Canonical Transform
    Zhao, Juan
    Tao, Ran
    Li, Yan-Lei
    Wang, Yue
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2009, 57 (07) : 2856 - 2858
  • [28] Uncertainty principles for linear canonical transform
    Mai, Weixiong
    Dang, Pei
    Pan, Wenliang
    Chen, Xuan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 548 (02)
  • [29] INTRODUCTION TO QUATERNION LINEAR CANONICAL TRANSFORM
    Gudadhe, Alka S.
    Thakare, Pranay P.
    JOURNAL OF SCIENCE AND ARTS, 2014, (01): : 45 - 52
  • [30] Discrete linear canonical transform on graphs
    Zhang, Yu
    Li, Bing-Zhao
    DIGITAL SIGNAL PROCESSING, 2023, 135