Linear Canonical Bargmann Transform

被引:0
|
作者
Linghu, Rong-Qian [1 ]
Li, Bing-Zhao [1 ,2 ]
机构
[1] Beijing Inst Technol, Sch Math & Stat, Beijing 102488, Peoples R China
[2] Beijing Inst Technol, Beijing Key Lab MCAACI, Beijing 102488, Peoples R China
基金
中国国家自然科学基金;
关键词
Linear canonical Bargmann transform; Bargmann transform; Convolution; Uncertainty principle; INTEGRAL TRANSFORM; ANALYTIC-FUNCTIONS; HILBERT-SPACE; FOURIER;
D O I
10.1007/s11785-024-01628-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a linear canonical transform associated with the Bargmann transform, referred to as the linear canonical Bargmann transform (LCBT) is proposed. The relationship between the Fourier transform, fractional Fourier transform, and the LCBT are discussed. Following this, the basic properties of the LCBT are derived, including the Parseval theorem, linearity, translation, modulation, convolution, and the uncertainty principle. It is evident that the LCBT serves as a generalized form of both the Fourier transform and fractional Fourier transform.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] The Bargmann transform and canonical transformations
    Villegas-Blas, C
    JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (05) : 2249 - 2283
  • [2] Linear Canonical Bargmann TransformLinear Canonical Bargmann TransformR.-Q. Linghu, B.-Z. Li
    Rong-Qian Linghu
    Bing-Zhao Li
    Complex Analysis and Operator Theory, 2025, 19 (1)
  • [3] Linear Canonical Transform
    Ding, Jian-Jiun
    Pei, Soo-Chang
    ADVANCES IN IMAGING AND ELECTRON PHYSICS, VOL 186, 2014, 186 : 39 - 99
  • [4] Study of twisted Bargmann transform via Bargmann transform
    Bais, Shubham R.
    Naidu, Venku D.
    FORUM MATHEMATICUM, 2021, 33 (06) : 1659 - 1670
  • [5] Linear canonical ambiguity function and linear canonical transform moments
    Zhao, Hui
    Ran, Qi-Wen
    Ma, Jing
    Tan, Li-Ying
    OPTIK, 2011, 122 (06): : 540 - 543
  • [6] Metrology and the linear canonical transform
    Hennelly, Bryan M.
    Kelly, Damien P.
    Ward, Jennifer E.
    Patten, Robert
    Gopinathan, Unnikrishnan
    O'Neill, Feidhlim T.
    Sheridan, John T.
    JOURNAL OF MODERN OPTICS, 2006, 53 (15) : 2167 - 2186
  • [7] Eigenfunctions of linear canonical transform
    Pei, SC
    Ding, JJ
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2002, 50 (01) : 11 - 26
  • [8] Linear canonical Stockwell transform
    Shah, Firdous A.
    Tantary, Azhar Y.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 484 (01)
  • [9] Linear Canonical S Transform
    Zhang Wei
    Tao Ran
    Wang Yue
    CHINESE JOURNAL OF ELECTRONICS, 2011, 20 (01): : 63 - 66
  • [10] Linear canonical wavelet transform and linear canonical wave packet transform on the Schwartz type spaces
    Rejini, M. Thanga
    Moorthy, R. Subash
    JOURNAL OF ANALYSIS, 2023, 33 (2): : 455 - 479