Realization of Landau-Zener Rabi oscillations on an optical lattice clock

被引:0
|
作者
Tan, Wei [1 ,2 ]
Liu, Wei-Xin [3 ]
Chen, Ying-Xin [1 ,2 ,4 ]
Zhou, Chi-Hua [1 ]
Zhao, Guo-Dong [1 ,2 ,4 ]
Chang, Hong [1 ,2 ,4 ]
Dai, Jun [5 ]
Wang, Tao [6 ,7 ,8 ]
机构
[1] Chinese Acad Sci, Natl Time Serv Ctr, Key Lab Time & Frequency Primary Stand, Xian 710600, Peoples R China
[2] Hefei Natl Lab, Hefei 230088, Peoples R China
[3] Xinzhou Normal Univ, Dept Phys, Xinzhou 034000, Peoples R China
[4] Univ Chinese Acad Sci, Sch Astron & Space Sci, Beijing 100049, Peoples R China
[5] Beijing Inst Collaborat Innovat, Beijing 100094, Peoples R China
[6] Chongqing Univ, Dept Phys, Chongqing 401331, Peoples R China
[7] Chongqing Univ, Chongqing Key Lab Strongly Coupled Phys, Chongqing 401331, Peoples R China
[8] Chongqing Univ Liyang, Ctr Modern Phys, Inst Smart City, Liyang 213300, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1103/PhysRevA.111.033102
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Manipulating quantum states is at the heart of quantum information processing and quantum metrology. Landau-Zener Rabi oscillation (LZRO), which arises from a quantum two-level system swept repeatedly across the avoided crossing point in the time domain, has been suggested for widespread use in manipulating quantum states. Cold atoms are one of the most prominent platforms for quantum computing and precision measurement. However, LZRO has never been observed in cold atoms due to its stringent requirements. By compensating for the linear drift of the clock laser and optimizing experimental parameters, we successfully measured LZRO on the strontium atomic optical clock platform under both fast- and slow-passage limits within four to six driving periods. Compared to previous results on other platforms, the duration of the plateau is 104 times longer in the optical lattice clock. The experimental data also suggests that destructive Landau-Zener interference can effectively suppress dephasing effects in the optical lattice clock, paving the way for manipulating quantum states against various environmental effects in cold atomic systems.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Nonlinear Landau-Zener tunneling
    Wu, B
    Niu, Q
    PHYSICAL REVIEW A, 2000, 61 (02): : 4
  • [32] Comment on "The Landau-Zener Formula"
    Chichinin, A. I.
    JOURNAL OF PHYSICAL CHEMISTRY B, 2013, 117 (19): : 6018 - 6018
  • [33] Superfluidity of Bose-Einstein condensate in an optical lattice: Landau-Zener tunnelling and dynamical instability
    Wu, B
    Niu, Q
    NEW JOURNAL OF PHYSICS, 2003, 5
  • [34] OBSERVATION OF LANDAU-ZENER DYNAMICS IN CLASSICAL OPTICAL-SYSTEMS
    BOUWMEESTER, D
    DEKKER, NH
    VONDORSSELAER, FE
    SCHRAMA, CA
    VISSER, PM
    WOERDMAN, JP
    PHYSICAL REVIEW A, 1995, 51 (01): : 646 - 654
  • [35] All-optical Landau-Zener tunneling in waveguide arrays
    Fratalocchi, A
    Assanto, G
    OPTICS EXPRESS, 2006, 14 (05) : 2021 - 2026
  • [36] Bloch oscillations, Landau-Zener tunneling and fractal patterns in a discrete fiber network
    Regensburger, Alois
    Bersch, Christoph
    Hinrichs, Benjamin
    Onishchukov, Georgy
    Schreiber, Andreas
    Silberhorn, Christine
    Peschel, Ulf
    2012 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2012,
  • [37] Band evolution and Landau-Zener Bloch oscillations in strained photonic rhombic lattices
    Xia, Shiqiang
    Zhang, Yingying
    Li, Zhixiang
    Qin, Lu
    Yang, Chunjie
    Lu, Hai
    Zhang, Jun
    Zhao, Xingdong
    Zhu, Zunlue
    OPTICS EXPRESS, 2021, 29 (23) : 37503 - 37514
  • [38] Inverse problem for the Landau-Zener effect
    Garanin, DA
    Schilling, R
    EUROPHYSICS LETTERS, 2002, 59 (01): : 7 - 13
  • [39] Landau-Zener interference at bichromatic driving
    Forster, Florian
    Muehlbacher, Max
    Blattmann, Ralf
    Schuh, Dieter
    Wegscheider, Werner
    Ludwig, Stefan
    Kohler, Sigmund
    PHYSICAL REVIEW B, 2015, 92 (24)
  • [40] Simulating the Landau-Zener transitions and Landau-Zener-Stuckelberg interferometers with compacted optical waveguides: An invariant method
    Liu, Hongying
    Dai, Maochun
    Wei, L. F.
    PHYSICAL REVIEW A, 2019, 99 (01)