Realization of Landau-Zener Rabi oscillations on an optical lattice clock

被引:0
|
作者
Tan, Wei [1 ,2 ]
Liu, Wei-Xin [3 ]
Chen, Ying-Xin [1 ,2 ,4 ]
Zhou, Chi-Hua [1 ]
Zhao, Guo-Dong [1 ,2 ,4 ]
Chang, Hong [1 ,2 ,4 ]
Dai, Jun [5 ]
Wang, Tao [6 ,7 ,8 ]
机构
[1] Chinese Acad Sci, Natl Time Serv Ctr, Key Lab Time & Frequency Primary Stand, Xian 710600, Peoples R China
[2] Hefei Natl Lab, Hefei 230088, Peoples R China
[3] Xinzhou Normal Univ, Dept Phys, Xinzhou 034000, Peoples R China
[4] Univ Chinese Acad Sci, Sch Astron & Space Sci, Beijing 100049, Peoples R China
[5] Beijing Inst Collaborat Innovat, Beijing 100094, Peoples R China
[6] Chongqing Univ, Dept Phys, Chongqing 401331, Peoples R China
[7] Chongqing Univ, Chongqing Key Lab Strongly Coupled Phys, Chongqing 401331, Peoples R China
[8] Chongqing Univ Liyang, Ctr Modern Phys, Inst Smart City, Liyang 213300, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1103/PhysRevA.111.033102
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Manipulating quantum states is at the heart of quantum information processing and quantum metrology. Landau-Zener Rabi oscillation (LZRO), which arises from a quantum two-level system swept repeatedly across the avoided crossing point in the time domain, has been suggested for widespread use in manipulating quantum states. Cold atoms are one of the most prominent platforms for quantum computing and precision measurement. However, LZRO has never been observed in cold atoms due to its stringent requirements. By compensating for the linear drift of the clock laser and optimizing experimental parameters, we successfully measured LZRO on the strontium atomic optical clock platform under both fast- and slow-passage limits within four to six driving periods. Compared to previous results on other platforms, the duration of the plateau is 104 times longer in the optical lattice clock. The experimental data also suggests that destructive Landau-Zener interference can effectively suppress dephasing effects in the optical lattice clock, paving the way for manipulating quantum states against various environmental effects in cold atomic systems.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Nonreciprocal Landau-Zener tunneling
    Kitamura, Sota
    Nagaosa, Naoto
    Morimoto, Takahiro
    COMMUNICATIONS PHYSICS, 2020, 3 (01)
  • [22] Landau-Zener transitions in chains
    Sinitsyn, N. A.
    PHYSICAL REVIEW A, 2013, 87 (03):
  • [23] Nonlinear Landau-Zener tunneling
    Wu, Biao
    Niu, Qian
    Physical Review A - Atomic, Molecular, and Optical Physics, 2000, 61 (02): : 234021 - 234024
  • [24] Geometric Landau-Zener Interferometry
    Gasparinetti, S.
    Solinas, P.
    Pekola, J. P.
    PHYSICAL REVIEW LETTERS, 2011, 107 (20)
  • [25] Landau-Zener effect in fission
    Mirea, M.
    Tassan-Got, L.
    Stephan, C.
    Bacri, C. O.
    Bobulescu, R. C.
    PHYSICAL REVIEW C, 2007, 76 (06):
  • [26] The microlocal Landau-Zener formula
    De Verdière, YC
    Lombardi, M
    Pollet, J
    ANNALES DE L INSTITUT HENRI POINCARE-PHYSIQUE THEORIQUE, 1999, 71 (01): : 95 - 127
  • [27] Landau-Zener tunneling of solitons
    Loladze, Vazha
    Khomeriki, Ramaz
    PHYSICAL REVIEW E, 2017, 95 (04)
  • [28] A Nonlinear Landau-Zener Formula
    Rémi Carles
    Clotilde Fermanian-Kammerer
    Journal of Statistical Physics, 2013, 152 : 619 - 656
  • [29] A Nonlinear Landau-Zener Formula
    Carles, Remi
    Fermanian-Kammerer, Clotilde
    JOURNAL OF STATISTICAL PHYSICS, 2013, 152 (04) : 619 - 656
  • [30] Landau-Zener interferometry for qubits
    A. V. Shytov
    D. A. Ivanov
    M. V. Feigel’man
    The European Physical Journal B - Condensed Matter and Complex Systems, 2003, 36 : 263 - 269