Dynamic Adaptive User Allocation in Mobile Edge Computing

被引:0
|
作者
Li, Jiajia [1 ]
Ji, Shunhui [1 ]
Jin, Huiying [2 ]
Dong, Hai [3 ]
Ge, Zhiyuan [1 ]
Zhang, Pengcheng [1 ]
机构
[1] Hohai Univ, Coll Comp Sci & Software Engn, Nanjing, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Sch Comp Sci, Nanjing, Peoples R China
[3] RMIT Univ, Sch Comp Technol, Melbourne, Vic, Australia
基金
澳大利亚研究理事会; 中国国家自然科学基金;
关键词
Mobile Edge Computing; User Allocation; QoS Optimizing; Ant Colony Algorithm; Knapsack Problem; OPTIMIZATION;
D O I
10.1109/SSE62657.2024.00035
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In mobile edge computing (MEC), mobile users can offload tasks to edge nodes to alleviate local computational loads, leveraging the computing capabilities of edge nodes. However, users' high mobility and temporal variability pose challenges in dynamically allocating mobile users to optimize perceived Quality of Service (QoS). To address this challenge, this paper proposes an adaptive ant colony algorithm for user allocation decisions. This method constructs hidden mobility fitness relationships between users and servers based on user movement trajectories. It utilizes an improved adaptive ant colony algorithm to adjust fitness values automatically and optimize user allocation. The goal is to maximize overall user satisfaction under resource constraints while minimizing user allocation costs. Experimental analysis demonstrates that the proposed method achieves higher user allocation rates and effectively utilizes available resources on edge servers.
引用
收藏
页码:179 / 187
页数:9
相关论文
共 50 条
  • [31] Energy-Efficient Resource Allocation for Multi-User Mobile Edge Computing
    Guo, Junfeng
    Song, Zhaozhe
    Cui, Ying
    Liu, Zhi
    Ji, Yusheng
    GLOBECOM 2017 - 2017 IEEE GLOBAL COMMUNICATIONS CONFERENCE, 2017,
  • [32] Dynamic Allocation of Computing and Communication Resources in Multi-Access Edge Computing for Mobile Users
    Plachy, Jan
    Becvar, Zdenek
    Strinati, Emilio Calvanese
    di Pietro, Nicola
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2021, 18 (02): : 2089 - 2106
  • [33] Dynamic adaptive workload offloading strategy in mobile edge computing networks
    Li, Yinlong
    Cheng, Siyao
    Zhang, Hao
    Liu, Jie
    COMPUTER NETWORKS, 2023, 233
  • [34] Wireless Powered Mobile Edge Computing: Dynamic Resource Allocation and Throughput Maximization
    Deng, Xiumei
    Li, Jun
    Shi, Long
    Wei, Zhiqiang
    Zhou, Xiaobo
    Yuan, Jinhong
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2022, 21 (06) : 2271 - 2288
  • [35] Enhancing the User Experience in Vehicular Edge Computing Networks: An Adaptive Resource Allocation Approach
    Sun, Xiaoke
    Zhao, Junhui
    Ma, Xiaoting
    Li, Qiuping
    IEEE ACCESS, 2019, 7 : 161074 - 161087
  • [36] Dynamic Workload Allocation for Edge Computing
    Hung, Yi-Wen
    Chen, Yung-Chih
    Lo, Chi
    So, Austin Go
    Chang, Shih-Chieh
    IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2021, 29 (03) : 519 - 529
  • [37] Adaptive Replication for Mobile Edge Computing
    Chang, Wan-Chi
    Wang, Pi-Chung
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2018, 36 (11) : 2422 - 2432
  • [38] Adaptive Computing Resource Allocation for Mobile Cloud Computing
    Liang, Hongbin
    Xing, Tianyi
    Cai, Lin X.
    Huang, Dijiang
    Peng, Daiyuan
    Liu, Yan
    INTERNATIONAL JOURNAL OF DISTRIBUTED SENSOR NETWORKS, 2013,
  • [39] Green resource allocation for mobile edge computing
    Meng, Anqi
    Wei, Guandong
    Zhao, Yao
    Gao, Xiaozheng
    Yang, Zhanxin
    DIGITAL COMMUNICATIONS AND NETWORKS, 2023, 9 (05) : 1190 - 1199
  • [40] Market-based dynamic resource allocation in Mobile Edge Computing systems with multi-server and multi-user
    Huang, Xiaowen
    Zhang, Wenjie
    Yang, Jingmin
    Yang, Liwei
    Yeo, Chai Kiat
    COMPUTER COMMUNICATIONS, 2021, 165 (165) : 43 - 52