Dynamic Adaptive User Allocation in Mobile Edge Computing

被引:0
|
作者
Li, Jiajia [1 ]
Ji, Shunhui [1 ]
Jin, Huiying [2 ]
Dong, Hai [3 ]
Ge, Zhiyuan [1 ]
Zhang, Pengcheng [1 ]
机构
[1] Hohai Univ, Coll Comp Sci & Software Engn, Nanjing, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Sch Comp Sci, Nanjing, Peoples R China
[3] RMIT Univ, Sch Comp Technol, Melbourne, Vic, Australia
基金
澳大利亚研究理事会; 中国国家自然科学基金;
关键词
Mobile Edge Computing; User Allocation; QoS Optimizing; Ant Colony Algorithm; Knapsack Problem; OPTIMIZATION;
D O I
10.1109/SSE62657.2024.00035
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In mobile edge computing (MEC), mobile users can offload tasks to edge nodes to alleviate local computational loads, leveraging the computing capabilities of edge nodes. However, users' high mobility and temporal variability pose challenges in dynamically allocating mobile users to optimize perceived Quality of Service (QoS). To address this challenge, this paper proposes an adaptive ant colony algorithm for user allocation decisions. This method constructs hidden mobility fitness relationships between users and servers based on user movement trajectories. It utilizes an improved adaptive ant colony algorithm to adjust fitness values automatically and optimize user allocation. The goal is to maximize overall user satisfaction under resource constraints while minimizing user allocation costs. Experimental analysis demonstrates that the proposed method achieves higher user allocation rates and effectively utilizes available resources on edge servers.
引用
收藏
页码:179 / 187
页数:9
相关论文
共 50 条
  • [21] Dynamic Network Slicing and Resource Allocation in Mobile Edge Computing Systems
    Feng, Jie
    Pei, Qingqi
    Yu, F. Richard
    Chu, Xiaoli
    Du, Jianbo
    Zhu, Li
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2020, 69 (07) : 7863 - 7878
  • [22] Dynamic Resource Allocation Exploiting Mobility Prediction in Mobile Edge Computing
    Plachy, Jan
    Becvar, Zdenek
    Strinati, Emilio Calvanese
    2016 IEEE 27TH ANNUAL INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR, AND MOBILE RADIO COMMUNICATIONS (PIMRC), 2016, : 2384 - 2389
  • [23] Dynamic Resource Allocation Strategy in Mobile Edge Cloud Computing Environment
    Lin, Qiang
    MOBILE INFORMATION SYSTEMS, 2021, 2021
  • [24] Edge user allocation by FOA in edge computing environment
    Li, Tingting
    Niu, Wenqi
    Ji, Cun
    JOURNAL OF COMPUTATIONAL SCIENCE, 2021, 53
  • [25] QoE-aware user allocation in edge computing systems with dynamic QoS
    Lai, Phu
    He, Qiang
    Cui, Guangming
    Xia, Xiaoyu
    Abdelrazek, Mohamed
    Chen, Feifei
    Hosking, John
    Grundy, John
    Yang, Yun
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2020, 112 : 684 - 694
  • [26] Adaptive computation offloading and resource allocation strategy in a mobile edge computing environment
    Tong, Zhao
    Deng, Xiaomei
    Ye, Feng
    Basodi, Sunitha
    Xiao, Xueli
    Pan, Yi
    INFORMATION SCIENCES, 2020, 537 (537) : 116 - 131
  • [27] Mobility-aware and Migration-enabled Online Edge User Allocation in Mobile Edge Computing
    Peng, Qinglan
    Xia, Yunni
    Feng, Zeng
    Lee, Jia
    Wu, Chunrong
    Luo, Xin
    Zheng, Wanbo
    Pang, Shanchen
    Liu, Hui
    Qin, Yidan
    Chen, Peng
    2019 IEEE INTERNATIONAL CONFERENCE ON WEB SERVICES (IEEE ICWS 2019), 2019, : 91 - 98
  • [28] Adaptive Resource Allocation in Future Wireless Networks With Blockchain and Mobile Edge Computing
    Guo, Fengxian
    Yu, F. Richard
    Zhang, Heli
    Ji, Hong
    Liu, Mengting
    Leung, Victor C. M.
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2020, 19 (03) : 1689 - 1703
  • [29] Energy-Efficient User Allocation and Content Updating in Mobile Edge Computing Networks
    Tan, Jingchao
    Zhang, Tiancheng
    Wang, Chenyang
    Li, Xiuhua
    Wang, Xiaofei
    ICC 2024 - IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2024, : 5275 - 5280
  • [30] Optimal multi-user offloading with resources allocation in mobile edge cloud computing
    Liu, Jiadi
    Guo, Songtao
    Wang, Quyuan
    Pan, Chengsheng
    Yang, Li
    COMPUTER NETWORKS, 2023, 221