Organ-on-a-chip: Quo vademus? Applications and regulatory status

被引:1
|
作者
Mendes, Maria [1 ,2 ]
Morais, Ana Sofia [1 ]
Carlos, Ana [1 ]
Sousa, Joao Jose [1 ]
Pais, Alberto Canelas [2 ]
Mihaila, Silvia M. [3 ]
Vitorino, Carla [1 ,2 ]
机构
[1] Univ Coimbra, Fac Pharm, P-3000548 Coimbra, Portugal
[2] Univ Coimbra, Inst Mol Sci IMS, Coimbra Chem Ctr, Dept Chem, P-3000535 Coimbra, Portugal
[3] Univ Utrecht, Utrecht Inst Pharmaceut Sci, Div Pharmacol, Utrecht, Netherlands
关键词
Organ-on-a-chip; Cellular microenvironment; Disease modeling; Drug testing; Personalized medicine; Microfluidics; MICROPHYSIOLOGICAL SYSTEMS; PROXIMAL TUBULE; MICROFLUIDIC DEVICE; TISSUE CHIPS; MODEL; LIVER; CELLS; GUT; TECHNOLOGY; BARRIER;
D O I
10.1016/j.colsurfb.2025.114507
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Organ-on-a-chip systems, also referred to as microphysiological systems (MPS), represent an advance in bioengineering microsystems designed to mimic key aspects of human organ physiology and function. Drawing inspiration from the intricate and hierarchical architecture of the human body, these innovative platforms have emerged as invaluable in vitro tools with wide-ranging applications in drug discovery and development, as well as in enhancing our understanding of disease physiology. The facility to replicate human tissues within physiologically relevant three-dimensional multicellular environments empowers organ-on-a-chip systems with versatility throughout different stages of the drug development process. Moreover, these systems can be tailored to mimic specific disease states, facilitating the investigation of disease progression, drug responses, and potential therapeutic interventions. In particular, they can demonstrate, in early-phase pre-clinical studies, the safety and toxicity profiles of potential therapeutic compounds. Furthermore, they play a pivotal role in the in vitro evaluation of drug efficacy and the modeling of human diseases. One of the most promising prospects of organ-on-a-chip technology is to simulate the pathophysiology of specific subpopulations and even individual patients, thereby being used in personalized medicine. By mimicking the physiological responses of diverse patient groups, these systems hold the promise of revolutionizing therapeutic strategies, guiding them towards tailored intervention to the unique needs of each patient. This review presents the development status and evolution of microfluidic platforms that have facilitated the transition from cells to organs recreated on chips and some of the opportunities and applications offered by organ-on-a-chip technology. Additionally, the current potential and future perspectives of these microphysiological systems and the challenges this technology still faces are discussed.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Clamping strategies for organ-on-a-chip devices
    Teixeira Carvalho, Daniel J.
    Moroni, Lorenzo
    Giselbrecht, Stefan
    NATURE REVIEWS MATERIALS, 2023, 8 (03) : 147 - 164
  • [32] Organ-on-a-chip for assessing environmental toxicants
    Cho, Soohee
    Yoon, Jeong-Yeol
    CURRENT OPINION IN BIOTECHNOLOGY, 2017, 45 : 34 - 42
  • [33] Engineered Biomimetic Membranes for Organ-on-a-Chip
    Rahimnejad, Maedeh
    Rasouli, Fariba
    Jahangiri, Sepideh
    Ahmadi, Sepideh
    Rabiee, Navid
    Farani, Marzieh Ramezani
    Akhavan, Omid
    Asadnia, Mohsen
    Fatahi, Yousef
    Hong, Sanghoon
    Lee, Jungho
    Lee, Junmin
    Hahn, Sei Kwang
    ACS BIOMATERIALS SCIENCE & ENGINEERING, 2022, 8 (12) : 5038 - 5059
  • [34] Engineered Vasculature for Organ-on-a-Chip Systems
    Abdellah Aazmi
    Hongzhao Zhou
    Yuting Li
    Mengfei Yu
    Xiaobin Xu
    Yutong Wu
    Liang Ma
    Bin Zhang
    Huayong Yang
    Engineering, 2022, 9 (02) : 131 - 147
  • [35] Integrating organoids and organ-on-a-chip devices
    Yimu Zhao
    Shira Landau
    Sargol Okhovatian
    Chuan Liu
    Rick Xing Ze Lu
    Benjamin Fook Lun Lai
    Qinghua Wu
    Jennifer Kieda
    Krisco Cheung
    Shravanthi Rajasekar
    Kimia Jozani
    Boyang Zhang
    Milica Radisic
    Nature Reviews Bioengineering, 2024, 2 (7): : 588 - 608
  • [36] Organ-on-a-chip technology for nanoparticle research
    Shawn Kang
    Sunghee Estelle Park
    Dan Dongeun Huh
    Nano Convergence, 8
  • [37] Engineered Vasculature for Organ-on-a-Chip Systems
    Abdellah Aazmi
    Hongzhao Zhou
    Yuting Li
    Mengfei Yu
    Xiaobin Xu
    Yutong Wu
    Liang Ma
    Bin Zhang
    Huayong Yang
    Engineering, 2022, (02) : 131 - 147
  • [38] Advances in Microfluidic Organ-on-a-Chip Systems
    Chen Chao-Yu
    Ma Yan
    Fang Qun
    CHINESE JOURNAL OF ANALYTICAL CHEMISTRY, 2019, 47 (11) : 1711 - 1720
  • [39] Organ-on-a-Chip Models of the Uterine Wall
    Hill, Christopher J.
    Busch, Caroline
    Maclean, Alison
    Hapangama, Dharani K.
    Zagnoni, Michele
    Sandison, Mairi E.
    REPRODUCTIVE SCIENCES, 2023, 30 : 199A - 199A
  • [40] Trends in organ-on-a-chip for pharmacological analysis
    Xu, Xinmei
    Cheung, Suet
    Jia, Xiaomeng
    Fan, Gang
    Ai, Yongjian
    Zhang, Yi
    Liang, Qionglin
    TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 2024, 180