Ultra-Short-Term Wind Power Forecasting Based on DT-DSCTransformer Model

被引:0
|
作者
Gao, Yanlong [1 ]
Xing, Feng [1 ]
Kang, Lipeng [1 ]
Zhang, Mingming [2 ]
Qin, Caiyan [2 ]
机构
[1] Liaoning Univ Technol, Sch Elect Engn, Jinzhou 121001, Peoples R China
[2] Harbin Inst Technol, Sch Mech Engn & Automat, Shenzhen 518055, Peoples R China
来源
IEEE ACCESS | 2025年 / 13卷
关键词
Predictive models; Data models; Wind power generation; Accuracy; Forecasting; Transformers; Correlation; Prediction algorithms; Computational modeling; Wind speed; Transformer; wind power prediction; distribution shift; DT; DSCAttention;
D O I
10.1109/ACCESS.2025.3537158
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
When using the Transformer model for wind power prediction, the accuracy of the model predictions tends to be reduced due to the shift in the wind power data distribution, channel mixing, and the inability of the model to establish strong correlations. To address these challenges, this paper proposes an ultra-short-term wind power prediction model based on the DT-DSCTransformer. First, the model applies DT's self-learning standardization and de-standardization parameters to standardize the input and de-standardize the output, mitigating the impact forecasting of data distribution shifts on prediction accuracy. Second, the proposed De-Stationary Channel Attention (DSCAttention) mechanism is introduced. By incorporating De-Stationary Attention (DSAttention) into the channel attention mechanism while maintaining channel independence, the model establishes stronger inter-channel correlations, addressing the performance degradation caused by channel mixing and weak correlations. Finally, experimental analysis demonstrates that the proposed model achieves the highest prediction accuracy compared to commonly used time series forecasting models.
引用
收藏
页码:22919 / 22930
页数:12
相关论文
共 50 条
  • [21] A Hybrid GA-PSO-CNN Model for Ultra-Short-Term Wind Power Forecasting
    Liu, Jie
    Shi, Quan
    Han, Ruilian
    Yang, Juan
    ENERGIES, 2021, 14 (20)
  • [22] Ultra-Short-Term Wind Power Forecasting Based on CGAN-CNN-LSTM Model Supported by Lidar
    Zhang, Jinhua
    Zhao, Zhengyang
    Yan, Jie
    Cheng, Peng
    SENSORS, 2023, 23 (09)
  • [23] Fluctuation pattern recognition based ultra-short-term wind power probabilistic forecasting method
    Fan, Huijing
    Zhen, Zhao
    Liu, Nian
    Sun, Yiqian
    Chang, Xiqiang
    Li, Yu
    Wang, Fei
    Mi, Zengqiang
    ENERGY, 2023, 266
  • [24] Research on Ultra-Short-Term Wind Power Forecasting Based on Refactored Representation of Environmental Features
    Wang, Feng
    Jiang, Jiading
    Zhang, Lingling
    PROCEEDINGS OF 2021 IEEE/WIC/ACM INTERNATIONAL CONFERENCE ON WEB INTELLIGENCE AND INTELLIGENT AGENT TECHNOLOGY WORKSHOPS AND SPECIAL SESSIONS: (WI-IAT WORKSHOP/SPECIAL SESSION 2021), 2021, : 375 - 379
  • [25] Ultra-short-term wind power forecasting based on contrastive learning-assisted training
    Wang Y.
    Zhu N.
    Xie H.
    Li J.
    Zhang K.
    Yi Qi Yi Biao Xue Bao/Chinese Journal of Scientific Instrument, 2023, 44 (03): : 89 - 97
  • [26] Hedge Backpropagation Based Online LSTM Architecture for Ultra-Short-Term Wind Power Forecasting
    Pan, Chunyang
    Wen, Shuli
    Zhu, Miao
    Ye, Huili
    Ma, Jianjun
    Jiang, Sheng
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2024, 39 (02) : 4179 - 4192
  • [27] Ultra-short-term forecasting of wind power based on multi-task learning and LSTM
    Junqiang, Wei
    Xuejie, Wu
    Tianming, Yang
    Runhai, Jiao
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2023, 149
  • [28] Ultra-short-term wind power multi-step forecasting based on improved AWNN
    Lu J.
    Zeng Y.
    Yu H.
    Liang P.
    Zhuang Y.
    Ge J.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2021, 42 (01): : 166 - 173
  • [29] Ultra-Short-Term Wind Power Forecasting in Complex Terrain: A Physics-Based Approach
    Michos, Dimitrios
    Catthoor, Francky
    Foussekis, Dimitris
    Kazantzidis, Andreas
    ENERGIES, 2024, 17 (21)
  • [30] Research on Wind Power Ultra-short-term Forecasting Method Based on PCA-LSTM
    Wu, Siying
    2020 6TH INTERNATIONAL CONFERENCE ON ENERGY MATERIALS AND ENVIRONMENT ENGINEERING, 2020, 508