Ultra-Short-Term Wind Power Forecasting Based on CGAN-CNN-LSTM Model Supported by Lidar

被引:6
|
作者
Zhang, Jinhua [1 ]
Zhao, Zhengyang [1 ]
Yan, Jie [2 ]
Cheng, Peng [1 ]
机构
[1] North China Univ Water Resources & Elect Power, Sch Energy & Power Engn, Zhengzhou 450045, Peoples R China
[2] North China Elect Power Univ, Coll New Energy, Beijing 100096, Peoples R China
关键词
wind power forecasting; conditional generative adversarial network; convolutional neural network; long-short term memory; attention mechanism; CONVOLUTIONAL NEURAL-NETWORK;
D O I
10.3390/s23094369
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Accurate prediction of wind power is of great significance to the stable operation of the power system and the vigorous development of the wind power industry. In order to further improve the accuracy of ultra-short-term wind power forecasting, an ultra-short-term wind power forecasting method based on the CGAN-CNN-LSTM algorithm is proposed. Firstly, the conditional generative adversarial network (CGAN) is used to fill in the missing segments of the data set. Then, the convolutional neural network (CNN) is used to extract the eigenvalues of the data, combined with the long short-term memory network (LSTM) to jointly construct a feature extraction module, and add an attention mechanism after the LSTM to assign weights to features, accelerate model convergence, and construct an ultra-short-term wind power forecasting model combined with the CGAN-CNN-LSTM. Finally, the position and function of each sensor in the Sole du Moulin Vieux wind farm in France is introduced. Then, using the sensor observation data of the wind farm as a test set, the CGAN-CNN-LSTM model was compared with the CNN-LSTM, LSTM, and SVM to verify the feasibility. At the same time, in order to prove the universality of this model and the ability of the CGAN, the model of the CNN-LSTM combined with the linear interpolation method is used for a controlled experiment with a data set of a wind farm in China. The final test results prove that the CGAN-CNN-LSTM model is not only more accurate in prediction results, but also applicable to a wide range of regions and has good value for the development of wind power.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Ultra-short-term multi-step wind power forecasting based on CNN-LSTM
    Wu, Qianyu
    Guan, Fei
    Lv, Chen
    Huang, Yongzhang
    [J]. IET RENEWABLE POWER GENERATION, 2021, 15 (05) : 1019 - 1029
  • [2] A novel model based on CEEMDAN, IWOA, and LSTM for ultra-short-term wind power forecasting
    Shaomei Yang
    Aijia Yuan
    Zhengqin Yu
    [J]. Environmental Science and Pollution Research, 2023, 30 (5) : 11689 - 11705
  • [3] A novel model based on CEEMDAN, IWOA, and LSTM for ultra-short-term wind power forecasting
    Yang, Shaomei
    Yuan, Aijia
    Yu, Zhengqin
    [J]. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2023, 30 (05) : 11689 - 11705
  • [4] An ultra-short-term wind speed prediction model using LSTM and CNN
    Xu, Xining
    Wei, Yuzhou
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (08) : 10819 - 10837
  • [5] An ultra-short-term wind speed prediction model using LSTM and CNN
    Xining Xu
    Yuzhou Wei
    [J]. Multimedia Tools and Applications, 2022, 81 : 10819 - 10837
  • [6] A Hybrid GA-PSO-CNN Model for Ultra-Short-Term Wind Power Forecasting
    Liu, Jie
    Shi, Quan
    Han, Ruilian
    Yang, Juan
    [J]. ENERGIES, 2021, 14 (20)
  • [7] Ultra-short-term forecasting of wind power based on multi-task learning and LSTM
    Junqiang, Wei
    Xuejie, Wu
    Tianming, Yang
    Runhai, Jiao
    [J]. INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2023, 149
  • [8] Hedge Backpropagation Based Online LSTM Architecture for Ultra-Short-Term Wind Power Forecasting
    Pan, Chunyang
    Wen, Shuli
    Zhu, Miao
    Ye, Huili
    Ma, Jianjun
    Jiang, Sheng
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2024, 39 (02) : 4179 - 4192
  • [9] Research on Wind Power Ultra-short-term Forecasting Method Based on PCA-LSTM
    Wu, Siying
    [J]. 2020 6TH INTERNATIONAL CONFERENCE ON ENERGY MATERIALS AND ENVIRONMENT ENGINEERING, 2020, 508
  • [10] A combined model based on POA-VMD secondary decomposition and LSTM for ultra-short-term wind power forecasting
    Yang, Shaomei
    Qian, Xiangyi
    [J]. JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY, 2024, 16 (03)