Speech Recognition Using ARMA Model and Levenberg-Marquardt Algorithm

被引:0
|
作者
Jafari, Reza [1 ]
Jafari, Amir H. [2 ]
机构
[1] Virginia Tech Univ, Falls Church, VA 22043 USA
[2] George Washington Univ, Washington, DC 20052 USA
来源
INTELLIGENT SYSTEMS AND APPLICATIONS, VOL 4, INTELLISYS 2024 | 2024年 / 1068卷
关键词
Speech recognition; Nonlinear optimization; Residual analysis;
D O I
10.1007/978-3-031-66336-9_25
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Autoregressive Moving Average (ARMA) is a simple linear model with memory that can be used for speech recognition problems. This is why, this paper utilized the derivation of ARMA model for the speech recognition. The flexibility of ARMA model helps in derivation of an accurate model that recognizes the pronunciation of letter B. The Generalized Partial Autocorrelation (GPAC) analysis has been used for the preliminary identification and the Maximum Likelihood Estimator (Levenberg-Marquardt) is used for the parameter estimations. Several models have been developed to recognize the letter B that are pronounced by a lady 30 times. The simplest model has been chosen at the end. The accuracy of the final model has been checked using chi(2) test.
引用
收藏
页码:351 / 367
页数:17
相关论文
共 50 条
  • [41] Hybrid algorithm for aero-engine model solving based on Levenberg-Marquardt algorithm
    Tang H.
    Xie W.
    Cui Y.
    Deng K.
    Hangkong Dongli Xuebao/Journal of Aerospace Power, 2023, 38 (02): : 371 - 381
  • [42] Damage localization using Levenberg-Marquardt optimization
    Parker, Danny L.
    Frazier, William G.
    Gray, Mathew A.
    DAMAGE ASSESSMENT OF STRUCTURES VII, 2007, 347 : 95 - +
  • [43] BLEVE risk effect estimation using the Levenberg-Marquardt algorithm in an artificial neural network model
    Barisik, Tolga
    Guneri, Ali Fuat
    SIGMA JOURNAL OF ENGINEERING AND NATURAL SCIENCES-SIGMA MUHENDISLIK VE FEN BILIMLERI DERGISI, 2022, 40 (04): : 877 - 893
  • [44] A note on the Levenberg-Marquardt parameter
    Fan, Jinyan
    Pan, Jianyu
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 207 (02) : 351 - 359
  • [45] Development of an Experimental Model for a Magnetorheological Damper Using Artificial Neural Networks (Levenberg-Marquardt Algorithm)
    Raizada, Ayush
    Singru, Pravin
    Krishnakumar, Vishnuvardhan
    Raj, Varun
    ADVANCES IN ACOUSTICS AND VIBRATION, 2016, 2016
  • [46] Parameter identification of solar cell model using Levenberg-Marquardt algorithm combined with simulated annealing
    Dkhichi, Fayrouz
    Oukarfi, Benyounes
    Fakkar, Abderrahim
    Belbounaguia, Noureddine
    SOLAR ENERGY, 2014, 110 : 781 - 788
  • [47] Geometric Algebra Levenberg-Marquardt
    De Keninck, Steven
    Dorst, Leo
    ADVANCES IN COMPUTER GRAPHICS, CGI 2019, 2019, 11542 : 511 - 522
  • [48] A Distance Geometry Procedure Using the Levenberg-Marquardt Algorithm and with Applications in Biology but Not only
    Goncalves, Douglas S.
    Mucherino, Antonio
    BIOINFORMATICS AND BIOMEDICAL ENGINEERING, PT II, 2022, : 142 - 152
  • [49] Lateral control of autonomous vehicle using levenberg-marquardt neural network algorithm
    Lee, K.B.
    Kim, Y.J.
    Ahn, O.S.
    Kim, Y.B.
    International Journal of Automotive Technology, 2002, 3 (02) : 79 - 88
  • [50] Using Levenberg-Marquardt minimization in neural model based predictive control
    Declercq, F
    DeKeyser, R
    ARTIFICIAL INTELLIGENCE IN REAL-TIME CONTROL 1995 (AIRTC'95), 1996, : 289 - 293