Damage localization using Levenberg-Marquardt optimization

被引:1
|
作者
Parker, Danny L. [1 ]
Frazier, William G. [2 ]
Gray, Mathew A. [1 ]
机构
[1] 9 Ind Dr, Oxford, MS 38655 USA
[2] 4 CR 2050, Oxford, MS 38655 USA
来源
关键词
damage localization; dynamical systems; Levenberg-Marquardt; LMS; optimization;
D O I
10.4028/www.scientific.net/KEM.347.95
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
In this paper, an optimal solution method is proposed for determining the location of change, i.e. damage, within a perturbed system utilizing a nonlinear pseudo-second order search algorithm based on function evaluations and gradient information. This method is applied to damped vibrating systems and utilizes stiffness matrix sensitivities to determine the direction of search within the estimation. The site of damage (location of change) is the solution which minimizes the error between the predicted and measured change. A by-product of the Levenberg-Marquardt algorithm is an estimation of the magnitude of the change within the system which correlates to damage extent. A second-order model of a dynamic system is used, and an approximation is developed to describe small perturbations within the system.
引用
收藏
页码:95 / +
页数:2
相关论文
共 50 条
  • [1] Distributed localization using Levenberg-Marquardt algorithm
    Shervin Parvini Ahmadi
    Anders Hansson
    Sina Khoshfetrat Pakazad
    [J]. EURASIP Journal on Advances in Signal Processing, 2021
  • [2] Distributed localization using Levenberg-Marquardt algorithm
    Ahmadi, Shervin Parvini
    Hansson, Anders
    Pakazad, Sina Khoshfetrat
    [J]. EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2021, 2021 (01)
  • [3] Adaptive Levenberg-Marquardt Algorithm: A New Optimization Strategy for Levenberg-Marquardt Neural Networks
    Yan, Zhiqi
    Zhong, Shisheng
    Lin, Lin
    Cui, Zhiquan
    [J]. MATHEMATICS, 2021, 9 (17)
  • [4] Parameter extraction and optimization using Levenberg-Marquardt algorithm
    Duc-Hung, Le
    Cong-Kha, Pham
    Trang, Nguyen Thi Thien
    Tu, Bui Trong
    [J]. 2012 FOURTH INTERNATIONAL CONFERENCE ON COMMUNICATIONS AND ELECTRONICS (ICCE), 2012, : 434 - 437
  • [5] Relative Localization and Mapping combining Multidimensional Scaling and Levenberg-Marquardt optimization
    De Marziani, C.
    Urena, J.
    Hernandez, A.
    Garcia, J. J.
    Jimenez, A.
    Perez, M. C.
    Alvarez, F.
    Villadangos, J. M.
    [J]. WISP 2009: 6TH IEEE INTERNATIONAL SYMPOSIUM ON INTELLIGENT SIGNAL PROCESSING, PROCEEDINGS, 2009, : 43 - +
  • [6] A Levenberg-Marquardt algorithm for unconstrained multicriteria optimization
    Fischer, Andreas
    Shukla, Pradyumn K.
    [J]. OPERATIONS RESEARCH LETTERS, 2008, 36 (05) : 643 - 646
  • [7] Intrusion Detection based on KELM with Levenberg-Marquardt Optimization
    Jayaprakash, R.
    Murugappan, S.
    [J]. 2015 INTERNATIONAL CONFERENCE ON COMMUNICATIONS AND SIGNAL PROCESSING (ICCSP), 2015, : 154 - 156
  • [8] Efficient Localization Algorithm for Wireless Sensor Networks Using Levenberg-Marquardt Refinement
    Saeed, N.
    Bhatti, D. M. S.
    Haq, M. I. U.
    [J]. AD HOC & SENSOR WIRELESS NETWORKS, 2016, 34 (1-4) : 245 - 256
  • [9] A note on the Levenberg-Marquardt parameter
    Fan, Jinyan
    Pan, Jianyu
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2009, 207 (02) : 351 - 359
  • [10] A Parallel Levenberg-Marquardt Algorithm
    Cao, Jun
    Novstrup, Krista A.
    Goyal, Ayush
    Midkiff, Samuel R.
    Caruthers, James M.
    [J]. ICS'09: PROCEEDINGS OF THE 2009 ACM SIGARCH INTERNATIONAL CONFERENCE ON SUPERCOMPUTING, 2009, : 450 - 459