ON THE CONVERGENCE OF THE DISCONTINUOUS GALERKIN SCHEME FOR EINSTEIN-SCALAR EQUATIONS

被引:0
|
作者
Chen, Yuewen [1 ]
Shu, Chi-wang [2 ]
Yau, Shing-tung [1 ,3 ]
机构
[1] Tsinghua Univ, Yau Math Sci Ctr, Beijing 100084, Peoples R China
[2] Brown Univ, Div Appl Math, Providence, RI 02912 USA
[3] Yanqi Lake Beijing Inst Math Sci & Applicat, Beijing 101408, Peoples R China
关键词
Einstein-scalar equations; discontinuous Galerkin scheme; FINITE-ELEMENT-METHOD; CONSERVATION-LAWS; GENERALIZED SOLUTIONS; NUMERICAL RELATIVITY; GRAVITATIONAL-WAVES; BOUNDARY-CONDITIONS; SMOOTH SOLUTIONS; EVOLUTION;
D O I
10.1090/mcom/4077
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the stability and convergence of the high order discontinuous Galerkin scheme to spherically symmetric Einstein-scalar equations for a class of large initial data that ensures the formation of a black hole. Having chosen the Bondi coordinate system, we achieve L2 stability and obtain the optimal error estimates.
引用
收藏
页数:31
相关论文
共 50 条