The basic error estimate for the discontinuous Galerkin method for hyperbolic equations indicates an O(h(n+1/2)) convergence rate for nth degree polynomial approximation over a triangular mesh of size h. However, the optimal O(h(n+1)) rate is frequently seen in practice. Here we extend the class of meshes for which sharpness of the O(h(n+1/2)) estimate can be demonstrated, using as an example a problem with a "nonaligned" mesh in which all triangle sides are bounded away from the characteristic direction. The key to realizing h(n+1/2) convergence is a mesh which, to the extent possible, directs the error to lower frequency modes which are approximated, not damped, as h -> 0.
机构:
Beijing Computat Sci Res Ctr, Beijing 100193, Peoples R China
Xiangtan Univ, Sch Math & Computat Sci, Xiangtan 411105, Peoples R ChinaBeijing Computat Sci Res Ctr, Beijing 100193, Peoples R China
Du, Yu
Zhang, Lu
论文数: 0引用数: 0
h-index: 0
机构:
Southern Methodist Univ, Dept Math, Dallas, TX 75205 USABeijing Computat Sci Res Ctr, Beijing 100193, Peoples R China
Zhang, Lu
Zhang, Zhimin
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Computat Sci Res Ctr, Beijing 100193, Peoples R China
Wayne State Univ, Dept Math, Detroit, MI 48202 USABeijing Computat Sci Res Ctr, Beijing 100193, Peoples R China
机构:
Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R ChinaBeijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
Cao, Waixiang
Shu, Chi-Wang
论文数: 0引用数: 0
h-index: 0
机构:
Brown Univ, Div Appl Math, Providence, RI 02912 USABeijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
Shu, Chi-Wang
Yang, Yang
论文数: 0引用数: 0
h-index: 0
机构:
Michigan Technol Univ, Dept Math Sci, Houghton, MI 49931 USABeijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
Yang, Yang
Zhang, Zhimin
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Computat Sci Res Ctr, Beijing 100193, Peoples R China
Wayne State Univ, Dept Math, Detroit, MI 48202 USABeijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China