CONVERGENCE ANALYSIS OF A DISCONTINUOUS GALERKIN METHOD FOR WAVE EQUATIONS IN SECOND-ORDER FORM

被引:2
|
作者
Du, Yu [1 ,2 ]
Zhang, Lu [3 ]
Zhang, Zhimin [1 ,4 ]
机构
[1] Beijing Computat Sci Res Ctr, Beijing 100193, Peoples R China
[2] Xiangtan Univ, Sch Math & Computat Sci, Xiangtan 411105, Peoples R China
[3] Southern Methodist Univ, Dept Math, Dallas, TX 75205 USA
[4] Wayne State Univ, Dept Math, Detroit, MI 48202 USA
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
discontinuous Galerkin method; wave equation; supercloseness; superconvergence; PPR; POLYNOMIAL PRESERVING RECOVERY; HELMHOLTZ-EQUATION; GRADIENT RECOVERY; SUPERCONVERGENCE; DISCRETIZATIONS;
D O I
10.1137/18M1190495
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the convergence property of a spatial discontinuous Galerkin method for wave equations. We prove an optimal convergence rate in the energy norm, which improves an existing suboptimal a priori error estimate. In addition, by adding a penalty term to the variational form, we obtain a supercloseness result, based on which we prove superconvergence of a postprocessed gradient, where the postprocessing operator is the polynomial preserving recovery. All theoretical findings are verified by numerical tests.
引用
收藏
页码:238 / 265
页数:28
相关论文
共 50 条