Response of Maize (Zea mays L.) to Foliar-Applied Nanoparticles of Zinc Oxide and Manganese Oxide Under Drought Stress

被引:0
|
作者
Kathirvelan, Perumal [1 ]
Vaishnavi, Sonam [1 ]
Manivannan, Venkatesan [1 ]
Djanaguiraman, M. [2 ]
Thiyageshwari, S. [3 ]
Parasuraman, P. [1 ]
Kalarani, M. K. [4 ]
机构
[1] Tamil Nadu Agr Univ, Dept Agron, Coimbatore 641003, India
[2] Tamil Nadu Agr Univ, Dept Crop Physiol, Coimbatore 641003, India
[3] Tamil Nadu Agr Univ, Dept Soil Sci & Agr Chem, Coimbatore 641003, India
[4] Tamil Nadu Agr Univ, Directorate Crop Management, Coimbatore 641003, India
来源
PLANTS-BASEL | 2025年 / 14卷 / 05期
关键词
stay green; drought; nanoparticles; maize; PROLINE; METABOLISM;
D O I
10.3390/plants14050732
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Maize (Zea mays L.) is an important crop grown for food, feed, and energy. In general, maize yield is decreased due to drought stress during the reproductive stages, and, hence, it is critical to improve the grain yield under drought. A field experiment was conducted with a split-plot design. The main factor was the irrigation regime viz. well-irrigated conditions and withholding irrigation from tasseling to grain filling for 21 days. The subplots include six treatments, namely, (i) the control (water spray), (ii) zinc oxide @ 100 ppm, (iii) manganese oxide @ 20 ppm, (iv) nZnO @ 100 ppm + nMnO @ 20 ppm, (v) Tamil Nadu Agricultural University (TNAU) Nano Revive @ 1.0%, and (vi) zinc sulfate 0.25% + manganese sulfate 0.25%. During drought stress, the anthesis-silking interval (ASI), chlorophyll a and b content, proline, starch, and carbohydrate fractions were recorded. At harvest, the grain-filling rate and duration, per cent green leaf area, and yield traits were recorded. Drought stress increased the proline (38.1%) and anthesis-silking interval (0.45 d) over the irrigated condition. However, the foliar application of ZnO (100 ppm) and nMnO (20 ppm) lowered the ASI and increased the green leaf area, leaf chlorophyll index, and proline content over water spray. The seed-filling rate (17%), seed-filling duration (11%), and seed yield (19%) decreased under drought. Nevertheless, the seed-filling rate (90%), seed-filling duration (13%), and seed yield (52%) were increased by the foliar spraying of nZnO (100 ppm) and nMnO (20 ppm) over water spray. These findings suggest that nZnO and nMnO significantly improve the grain yield of maize under drought stress conditions.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Rapid method of screening for drought stress tolerance in maize (Zea mays L.)
    Kumar, Bhupender
    Kumar, Krishan
    Jat, Shankar Lal
    Srivastava, Shraddha
    Tiwari, Tanu
    Kumar, Sonu
    Meenakshi
    Pradhan, Hans Raj
    Kumar, Brijesh
    Chaturvedi, Garima
    Jha, Abhishek Kumar
    Rakshit, Sujay
    INDIAN JOURNAL OF GENETICS AND PLANT BREEDING, 2020, 80 (01) : 16 - 25
  • [42] β-aminobutyric acid mediated drought stress alleviation in maize (Zea mays L.)
    Shaw, Arun K.
    Bhardwaj, Pardeep K.
    Ghosh, Supriya
    Roy, Sankhajit
    Saha, Suman
    Sherpa, Ang R.
    Saha, Samir K.
    Hossain, Zahed
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2016, 23 (03) : 2437 - 2453
  • [43] Impact of drought stress on morphological and yield components in maize (Zea mays L.)
    Sellamuthu, Ramya
    Dhanarajan, Arulbalachandran
    Marimuthu, Ramachandran
    RESEARCH JOURNAL OF BIOTECHNOLOGY, 2022, 17 (10): : 77 - 85
  • [44] β-aminobutyric acid mediated drought stress alleviation in maize (Zea mays L.)
    Arun K. Shaw
    Pardeep K. Bhardwaj
    Supriya Ghosh
    Sankhajit Roy
    Suman Saha
    Ang R. Sherpa
    Samir K. Saha
    Zahed Hossain
    Environmental Science and Pollution Research, 2016, 23 : 2437 - 2453
  • [45] Effect of naphthyl acetic acid foliar spray on the physiological mechanism of drought stress tolerance in maize (Zea Mays L.)
    Ullah, Sami
    Afzal, Ishfaq
    Shumaila, Shum
    Shah, Wadood
    PLANT STRESS, 2021, 2
  • [46] Soil nitrous oxide emissions in a maize (Zea mays L.) crop in response to nitrogen fertilisation
    Alvarez, Carolina
    Alvarez, Carina R.
    Alves, Bruno J. R.
    Costantini, Alejandr O.
    SOIL RESEARCH, 2022, 60 (08)
  • [47] Physiological Characteristic Changes and Transcriptome Analysis of Maize (Zea mays L.) Roots under Drought Stress
    Zou, Chenglin
    Tan, Hua
    Huang, Kaijian
    Zhai, Ruining
    Yang, Meng
    Huang, Aihua
    Wei, Xinxing
    Mo, Runxiu
    Xiong, Faqian
    INTERNATIONAL JOURNAL OF GENOMICS, 2024, 2024
  • [48] ROLE OF POTASSIUM IN PHYSIOLOGICAL FUNCTIONS OF SPRING MAIZE (Zea mays L.) GROWN UNDER DROUGHT STRESS
    Aslam, M.
    Zamir, M. S. I.
    Afzal, I.
    Amin, M.
    JOURNAL OF ANIMAL AND PLANT SCIENCES-JAPS, 2014, 24 (05): : 1452 - 1465
  • [49] Genomic Regions Associated with Root Traits under Drought Stress in Tropical Maize (Zea mays L.)
    Zaidi, P. H.
    Seetharam, K.
    Krishna, Girish
    Krishnamurthy, L.
    Gajanan, S.
    Babu, Raman
    Zerka, M.
    Vinayan, M. T.
    Vivek, B. S.
    PLOS ONE, 2016, 11 (10):
  • [50] Genotypic variation between maize (Zea mays L.) single cross hybrids in response to drought stress
    Grzesiak, S
    ACTA PHYSIOLOGIAE PLANTARUM, 2001, 23 (04) : 443 - 456