Disjoint hypercyclic Toeplitz operators

被引:0
|
作者
Deger, Ozkan [1 ]
Eskisehirli, Beyaz Basak [1 ]
机构
[1] Istanbul Univ, Fac Sci, Dept Math, Istanbul, Turkiye
关键词
Disjoint hypercyclic operator; d-Hypercyclic operator; Hypercyclic operator; Toeplitz operator;
D O I
10.1007/s00013-024-02084-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this work is to describe new classes of disjoint hypercyclic Toeplitz operators on the Hardy space H2(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H<^>2({\mathbb {D}})$$\end{document} in the unit disc D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {D}}$$\end{document}. We examine the disjoint hypercyclicity of the coanalytic Toeplitz operators, the Toeplitz operators with the symbols az<overline>+b+cz\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a{\bar{z}}+b+cz$$\end{document}, where a,b,c is an element of C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a,b,c\in {\mathbb {C}}$$\end{document}, and the Toeplitz operators with the symbols p(z<overline>)+phi(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p(\bar{z})+\varphi (z)$$\end{document}, where p is a polynomial and phi is an element of H infinity(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi \in H<^>\infty (\mathbb {D})$$\end{document}. The hypercyclicity of these classes of Toeplitz operators has been characterized by G. Godefroy and J. Shapiro (J. Funct. Anal., 98, 1991), S. Shkarin (arXiv:1210.3191v1, 2012), and A. Baranov and L. Lishanskii (Results Math., 70, 2016), respectively. Based on their results, we first provide a criterion for the bounded linear operators to be disjoint hypercyclic. Using this criterion, we then establish certain conditions under which the aforementioned classes of Toeplitz operators are disjoint hypercyclic in terms of their symbols.
引用
收藏
页码:301 / 310
页数:10
相关论文
共 50 条
  • [31] ON INVERTIBLE HYPERCYCLIC OPERATORS
    HERRERO, DA
    KITAI, C
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 116 (03) : 873 - 875
  • [32] On the hereditarily hypercyclic operators
    Yousefi, Bahman
    Farrokhinia, Ali
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2006, 43 (06) : 1219 - 1229
  • [33] Hypercyclic Conjugate Operators
    Henrik Petersson
    Integral Equations and Operator Theory, 2007, 57 : 413 - 423
  • [34] Countably hypercyclic operators
    Feldman, NS
    JOURNAL OF OPERATOR THEORY, 2003, 50 (01) : 107 - 117
  • [35] Hereditarily hypercyclic operators
    Bès, J
    Peris, A
    JOURNAL OF FUNCTIONAL ANALYSIS, 1999, 167 (01) : 94 - 112
  • [36] Porosity and hypercyclic operators
    Bayart, F
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (11) : 3309 - 3316
  • [37] Syndetically hypercyclic operators
    Peris, A
    Saldivia, L
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2005, 51 (02) : 275 - 281
  • [38] Disjoint hypercyclic powers of weighted translations on groups
    Zhang, Liang
    Lu, Hui-Qiang
    Fu, Xiao-Mei
    Zhou, Ze-Hua
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2017, 67 (03) : 839 - 853
  • [39] Disjoint frequently hypercyclic pseudo-shifts
    Martin, Ozgur
    Menet, Quentin
    Puig, Yunied
    JOURNAL OF FUNCTIONAL ANALYSIS, 2022, 283 (01)
  • [40] Pathological hypercyclic operators
    Héctor N. Salas
    Archiv der Mathematik, 2006, 86 : 241 - 250